-AA-11-1993-SCFI

"METODO DE PRUEBA PARA LA EVALUACION DE EMISIONES DE GASES DEL ESCAPE DE LOS VEHICULOS AUTOMOTORES NUEVOS EN PLANTA QUE USAN GASOLINA COMO COMBUSTIBLE

TEST METOD FOR THE VALUTION OF GAS EMISSIONS OF THE NEW AUTOMOTORS VEHICLES ESCAPE IN PLANT WHICH USING GASOLINE AS FUEL.

INDICE

CAPITULO Y TITULO

- 1. OBJETIVO Y CAMPO DE APLICACIÓN
- 2. REFERENCIAS
- 3. DEFINICIONES Y TERMINOLOGIA
- 4. CLASIFICACION.
- 5. ACUMULACION DE CARBON Y PRUEBA EN VEHICULOS.
- 6. RESUMEN DE REALIZACION DE LA PRUEBA
- 7. APARATOS Y EQUIPO
- 8. MATERIALES Y REACTIVOS
- 9. CALIBRACION DEL SISTEMA DE ANALISIS Y MANEJO DE LA MUESTRA
- 10. PROCEDIMIENTO DE PRUEBA
- 11. PROCEDIMIENTO PARA CALCULAR LA EMISION DE ESCAPE
- 12. CALCULO DE ECONOMICA O RENDIMIENTO DE COMBUSTIBLE
- 13. APENDICE
- 14. CALCULO DE LAS EMISIONES DE ESCAPE
- 15. ANEXOS DE DIAGRAMAS Y TABLAS

Anexo 1.

Sistema de muestreo de gases de escape

Anexo 2.

Sistema analizador de gases de escape

Anexo 3.

Detector de eficiencia del convertidor de NOx

Anexo 4.

Configuración de la calidad de la bomba de desplazamiento positivo

Anexo 5.

VFC - CVS. Configuración para la calibraciónn

Anexo 6. VFC.

Configuración para la calibración

Anexo 7 - Figuras

Anexo 8 - Tabla 1

Anexo 9 - Tabla 2

BIBLIOGRARFIA

17. CONCORDANCIA CON NORMAS INTERNACIONALES

1. OBJETIVO Y CAMPO DE APLICACION

La presente Norma Mexicana establece el procedimiento para la evaluación de las emisiones de los gases provenientes del escape de los vehiculos automatores nuevos en planta, que usan gasolina como combustible, con peso bruto vehicular hasta de 3,857 kg. No se aplica a motocicletas, ni a vehiculos con cilindrada menor de 820 cm³.

2. REFERENCIAS

Esta norma se complementa con las siguientes Normas Oficial Mexicana vigentes:

NOM-CCAP-010-ECOL

"Establece las características del equipo y el procedimiento de medición, para la verificación de los niveles de emisión de contaminantes, prvenientes de los vehículos automotores en circulación que usan gasolina, gas licuado de petróleo, gas natural u otros combustibles alternos".

3. DEFINICIONES Y TERMINOLOGIA

3.1 Definiciones

3.1.1 Vehículo de certificación.

Prototipo con motor de desarrollo o nuevo representativo de la producción de un tipo de vehículo.

- **3.1.2** Vehículo de verificación. Vehículo automotor nuevo, representativo de la producción del año modelo que se someterá a prueba de verificación de gases.
 - **3.1.3** Carga de Camino (potencia de resistencia).

Carga que debe aplicar el dinamómetro, para reproducir la resistencia que presenta el camino al vehículo en desplazamiento, bajo condiciones balanceadas de viento a 80 km/h de velocidad real.

3.1.4 Emisión de gas por el escape.

Hidrocarburos (HC), monóxido de carbono (CO) y óxidos de nitrógeno (NOx), emitidos a la atmósfera desde cualquier abertura de los puertos de escape del motor de un vehículo.

3.1.5 Familia de motores.Unidad básica de clasificación de la linea de motores de un fabricante (ver punto 4.1).

3.1.6 Gas de trabajo

Gas que se usa para ajustar los analizadores durante cada prueba.

- **3.1.7** Gas de calibraciónGas de concentración conocida que se usa para establecer la curva de respuesta de un analizador.
 - 3.1.8 Masa de inercia del vehículo.

Carga seleccionada en el dinamómetro, para reproducir la inercia propia del vehículo (ver puntos 10.5).

3.1.9 Peso vehicular

Peso real del vehiculo en condiciones de operación, con todo el equipo patrón de fábrica y con combustible a la capacidad nominal del tanque.

- **3.1.10** Preacondicionamiento. Ciclo de manejo para llevar el vehículo a las condiciones normales de operación, conforme a las especificaciones del fabricante.
 - 3.1.11 Tren de fuerza (tren motriz).

Conjunto de componentes mecánicos que autopropulsan un vehículo automotor, integrado por: motor, caja de velocidades manual o automático, flecha y eje tractivo o, en su caso, transeje manual o automático, sistema de suspensión y frenos.

3.1.12 Tipo de vehiculo.

Unidad básica de clasificación, que comprende la combinación de familia de motor, tren de fuerza y peso del vehiculo con carga.

- **3.1.13** Peso del vehículo con carga. Peso vehicular, más una carga de 136 kg.
- **3.1.14** Volumen de combustible en el tanque.

Volumen que corresponde al 40% de la capacidad nominal del tanque redondeado al número entero más próximo, expresado en litros.

3.2 Terminología.

Para los efectos de esta norma mexicana, se usa la siguiente terminología:

BDP	Bomba de	e despl	lazamiento	positivo.
DDI	Domica a	c acop.	uzuminemo	positi i o.

CO Monóxido de carbono. CO2 Bióxido de carbono. DI Diámetro interior.

g/km Gramos por kilómetro.

HC Hidrocarburos.

K Kelvin. km Kilómetros. kpa Kilopascal

NOx Oxidos de nitrógeno. PBV Peso Bruto Vehicular. PPM Partes por millón.

PVR Presión de vapor reid. rpm Revoluciones por minuto.

SMVC Sistema e muestreo a volumen constante.

TFE Temperatura final de ebullición.
TIE Temperatura inicial de ebullición

VFC Venturi de flujo critico.

4. CLASIFICACION.

4.1 Clasificación en familias de motores.

Los vehículos de prueba para la verificación de emisión de gases se dividirán en grupos de motores con similares características de emisiones.

Para que un motor sea incluido en una familia de motor, éste debe ser idéntico a los demas en lo siguiente:

- Dimensión de centro a centro de cilindros.
- Configuración del block de las cilindros (enfriado por aire o agua; motor 6 cilindros en linea, V8 a 90°, etc).
- Localización de las válvulas de admisión y de escape (o los puertos).
- Método de aspiración del aire.
- Ciclo termodinámico (ver punto 13.1.1).
- Sistema de control de emisiones.
- **4.2** Si la autoridad competente determina que pudieran esperarse diferentes características de las emisiones de los motores agrupados según, la clasificación de una familia en el punto 4.1, entonces podrá basarse en la siguiente lista de datos:
 - Diámetro y carrera.-La relación de superficie a volumen de un cilindro dimensionado nominalmente, en las posiciones de punto muerto superior e inferior.
 - Tamaño y configuración del puerto del múltiple de admisión.
 - Tamaño y configuración del puerto del múltiple de escape.
 - Diámetro de válvulas de admisión y de escape.-Conjunto de componentes, bomba de combustible, carburador o equipo de inyección de combustible.
 - Caracteristicas del tiempo de ignición y tiempos del árbol de levas.
- **4.3** Si la autoridad competente determina que los motores son de unos tipos, los cuales no puedan ser divididos en familia de motores según, el criterio enlistado en 3.1 y 3.2, establecerá familias para éstos, basándose principalmente en las características de sus emisiones

5. ACUMULACION DE CARBON Y PRUEBA EN VEHICULOS.

La acumulación de carbón se efectúa según el procedimiento establecido por el fabricante.

Cada vehículo programado para las pruebas de certificación de emisiones, podrá ser manejado 6,436 km antes de efectuar las pruebas. En el caso de verificación podrá ser de hasta 300 km al momento de seleccionarlo.

6. RESUMEN DE REALIZACION DE LA PRUEBA

La prueba de las emisiones de gases por el escape se realiza en un dinamómetro de chasis y está diseñada para determinar la emisión de hidrocarburos, monóxido de carbono y óxidos de nitrógeno en g/km durante la simulación de un recorrido en un área urbana de aproximadamente 17.8 km, empezando con el motor frio.

El programa de manejo en el dinamómetro consiste de una serie de modos de operación del vehículo, no repetitivos de marcha lenta en vacío, aceleración, velocidad de crucero y desaceleración que orcurre en lapsos desiguales. Se caracteriza por condiciones transitorias suaves de velocidad contra tiempo. La frecuencia de tiempo empieza en el momento de arranque del motor, conforme al procedimiento descrito en el punto 10.

El vehículo se debe probar partiando de un arranque en frio. La operación a partir del arranque del motor y el recorrido del programa de manejo constituyen la prueba completa. Las emisiones de gases por el escape se diluyen con aire a un volumen constante, recolectándose una porción de la muestra en una bolsa y posteriormente se analiza cuantitativamente su composición de hidrocarburos, monóxido de carbono y óxidos de nitrógeno. Paralelamente se debe analizar una muestra del aire de dilución.

7. APARATOS Y EQUIPO

7.1 Guía de manejo y de velocidad real.

Dispositivo que sirve para guiar al operador del vehículo a seguir adecuadamente el programa de manejo en el dinamómetro de chasis. Debe contar con un graficador o un monitor que muestre la secuencia de manejo y la velocidad real.

7.2 Dinamómetro de chasis.

Dispositivo capaz de ptoporcionar carga al vehículo durante la prueba de manejo. Debe estar equipado con volantes de inercia y unidad de absorción de potencia de ajuste variable, cuyas caracteristicas sean tales que cumplan con los requisitos impuestos en los puntos 10.5 y 10.6.

- **7.3** Sistema de muestreo y análisis.Los diagramas del sistema de muestreo y análisis de gases de escape que se usan para la prueba se representan en los anexos 1 y 2. Se pueden usar componentes adicionales, tales como instrumentos., válvulas solenoides, bombas e interruptores, a fin de suministrar información adicional y coordinar las funciones de los sistemas componentes. Los instrumentos medidores de HC y CO se pueden conectar en serie, en lugar de en paralelo. A continuación se señalan los componentes del sistema de muestreo.
- **7.3.1** Filtros de admisión.Un filtro de papel para eliminar la materia sólida del aire de dilución y asi incremental la vida del filtro de carbón; un filtro de carbón para reducir y estabilizar el nivel de los hidrocarburos base y por último un filtro de partículas para eliminar el carbón del flujo del aire. Los filtros y el canducto que lieva el aire de dilución al punto donde se agrega el gas de escape, deben ser de una capacidad tal que la presión en el punto de mezcla sea menor que el equivalente de 2.5 cm de columna de agua, con respecto a la presión ambiental, cuando el sistema de muestreo a volumen constante esté operando a su máximo flujo.
- **7.3.2** Un tubo flexible con conector de sellado hermético para conectarse al tubo (o a los tubos) de escape del vehículo. El tubo flexible debe estar dimensionado y conectado de tal manera que las variaciones de presión estática en el (o los) tubo(s) de escape del vehículo permanezcan dentro de un límite de presión equivalente a 2.5 cm de columna de agua, con respecto a las variaciones de presión estática medidas durante el ciclo de manejo en el dinamómetro sin conectar el, (o los) tubo (s) de escape.
 - **7.3.3** Venturi de flujo crítico.

La operación del venturi de flujo crítico con muestreo a volumen constante (VFC-SMVC) (anexo 5), está basado en el principio de dinámica de fluidos asociados con flujo crítico.

- **7.3.4** Una bomba de desplazamiento positivo tipo Roots para conducir la mezcla diluída del gas de escape, mide el total del flujo del escape diluido a una temperatura y presión constantes a través de la bomba, contando las revoluciones de la misma. El muestreo se hace a flujo constante. La capacidad de la bomba debe ser de 8.5 a 10 m³/min para que elimine la condensación de agua en el sistema a condiciones patrón.
- **7.3.6** Sensor de temperatura (TI) con una precisión de \pm 1 K (\pm 1°C) para permitir el registro continuo de la temperatura de la mezcla del gas de escape diluído, que entra al sistema de muestreo. (BDP-SMVC).
- **7.3.6** Un sistema de sensor de presión (sensores y transductores) con una precisión de \pm 3 mm Hg (de columna de mercurio), para medir el vacio de la mezcla diluida de gas de escape que entra al sistema de muestreo (VFC).
- **7.3.7** Un vacuometro (G_I) con una precisión de \pm 3 mm Hg (de columna de mercurio) para medir vacío de mezcla diluída del gas de escape que entra al sistema de muestreo (BDP).

Un manómetro (G_2) con una precisión de \pm 3 mm Hg para medir el incremento de presión causado por el sistema (BDP).

- **7.3.8** Tubos de muestreo (S₁ Y S₂) colocados en dirección contraria al flujo, para recolectar las muestras del flujo de aire de dilución y la mezcla diluída de los gases de escape (ver 13.1.2).
- **7.3.9** Filtros (F₁ y F₂) aplicados a BDP o separador ciclónico aplicado a VFC para eliminar las particulas sólidas del aire de dilución y de las muestras diluidas de las gases de escape.
- **7.3.10** Bombas (P₁ y P₂) para enviar el aire de dilución y el gas de escape diluído a las respectivas bolsas de recolección.
- **7.3.11** Válvulas de control de flujo $(N_1 y N_2)$ para regular el flujo a las bolsas de recolección, a una velocidad de flujo cons-tante. La miníma velocidad de flujo debe ser de 0.142 m3/h.
- **7.3.12** Medidores de flujo (FL₁ y FL₂) para verificar con una observación visual., si la velocidad del flujo se mantiene cons-tante a través de toda la prueba.
- **7.3.13** Válvulas de solenoide de 3 vías (V₁ Y V₂) para dirigir el flujo de la muestra a la respectiva bolsa o al exterior.
 - **7.3.14** Conectores de sollado hermético para mantener la muestra en las bolsas.
- **7.3.15** Bolsas de recolección para almacenar las muestras diluídas del aire y de gases de escape, éstas deben ser de 0.142 m de volumen o convertir a litros como mínimo.
- **7.3.16** Contador de revoluciones (de operación de la bomba de desplazamiento positivo mientras la prueba se efectúa y la muestra se recolecta).
 - **7.4** Componentes del sistema de analisis de gases de escape.

Para efectuar las pruebas en el sistema de análisis de gases de escape, se utilizan los siguientes componentes:

- **7.4.1** Conectores de sellado hermético para unir las bolsas de muestreo al sistema analítico.
- **7.4.2** Filtros (F₃) para eliminar cualquier partícula residual de las muestras recolectadas.
- **7.4.3** Bomba (P₃) para enviar las muestras de la bolsa a los analizadores.

- **7.4.4** Válvulas selectoras $(V_3, V_4, y V_5)$ para dirigir las muestras, o los gases de calibración y de trabajo a los analizadores.
 - **7.4.5** Vávulas de control de flujo (N₃, N₄, N₅, N₆, N₇, N₈, N₉, N₁₀ y N₁₁).
 - **7.4.6** Medidores de flujo de as (FL₃, FL₃ y FL₃).
 - **7.4.7** Mútiple (M_1) para recolectar los gases expedidos por los analizadores.
- **7.4.8** Bomba (P₄) para enviar las gases expulsados del múltiple de recolección a una ventila externa del local de prueba.
 - **7.4.9** Analizadores para determinar las concentraciones de HC, CO Y NOx.
- **7.4.10** Convertidor de NOx., para trasformar el NOx que se encuentra resente en la muestra a NO2, antes del análisis.
- **7.4.11** Vávulas selectoras ($V_6 Y V_7$) para que los gases muestra, de ajuste de calibración o de ajuste de cero, desvíen del convertidor.
- **7.4.12** Registradores (R₁, R₂ y R₃) o impresores digitales, para obtener un registro permanente de la calibración, ajuste y medición de muestras; en aquellos laboratorios donde se incorporan sistemas de registros de datos por computadora, puede usar el mismo sistema de impresión de salida de la computadora.
- **7.4.13** Para determinar la concentración de HC se debe usar el método de detección de ionización de flama; la determinación de las concentraciones del CO se debe hacer por el método del espectrómetro infrarrojo de longitud de onda constante no dispersiva y la determinación de la concentración de NOx se debe hacer por el método de luminiscencia química que requiere que el NOx presente en la muestra sea convertido a NO₂ en el análisis.

8. MATERIALES Y REACTIVOS.

8.1 Combustible de prueba.

El combustible que se usa para recomendado por el fabricante del vehículo y por la Secretaría de Desarrollo Social - Instituto Nacional deEcologia.

8.2 Combustible para la acumulación de carbón.

El combistible utilizado para la acumulación de carbón debe cumplir las especificaciones del fabricante del vehículo.

8.3 Aire Artificial (aire cero)

Consiste de una mezcla de nitrógeno y oxígeno, con concentraciones de este último que varían entre 18 y 21 por ciento en mol. La concentración de impurezas permisibles para el "gas cero" no debe exceder de 6 ppm de respuesta equivalente de carbón, de 10 ppm de CO y 1 ppm de NOx.

8.4 Reactivos

Emplear monóxido de carbono, óxidos de nitrógeno, nitrógeno y propano grado reactivo analítico.

9. CALIBRACION DEL SISTEMA DE ANALISIS Y MANEJO DE LA MUESTRA.

9.1 Calibrar el equipo de análisis completo por lo menos una vez cada 30 dias, usando el mismo flujo que cuando se analizan las muestras de gases de escape.

Ajustar a cero el analizador de HC, CO y NOx con aire cero o nitrógeno.

Ajustar la ganancia del analizador de CO para dar el intervalo deseado. Seleccionar la escala de atenuación del analizador de HC, ajustando la relación del flujo capilar de la muestra; esto se efectúa ajustando el regulador de contrapresión para dar el intervalo deseado.

Seleccidnar la escala deseada del analizador de NOx y ajustar el suministro del alto voltaje de la fotocelda del bulbo o la ganancia del amplificador hasta dar el intervalo deseado. El intervalo de operación de los analizadores debe ser tal, que la lectura del analizador indique un nivel de emisiones equivalente a su patrón en los $^2/_3$ superiores de la escala.

Calibrar el analizador de HC con propano (como diluyente se usa aire cero) con concentraciones nominales de 50 y 100% de la escala total. Calibrar el analizador de CO con gas CO patrón (como diluyente se usa nitrógeno) con concentraciones nominales en mínimo 6 puntos de la escala y que la cubran en su totalidad. Las concentraciones reales deben conocerse con una aproximación de \pm 2% de los valores nominales.

Calibrar el analizador de NOx con gas de NO₂ patrón (como diluyente se usa nitrógeno) con concentraciones nominales de

50 y 100% de la escala total.

Comparar los valores obtenidos del analizador de CO con las curvas, de calibración previas. Cualquier cambio significativo es un indicio de que existe algún problema con el sistema. En caso de existir, localizarlo, corregirlo y recalibrar el analizador.

9.2 Para la determinación de la eficiencia del convertidor de NOx se utiliza el dispositivo que se ilustra en el anexo 3 y se calcula de acuerdo a la siguiente ecuación.

$$\%$$
 de eficiencia = $(1 + (a-b)/(c-d)) X 100$

Donde:

- a es la concentración obtenida en paso (6.2.5)
- b es la concentración obtenida en paso (6.2.6)
- c es la concentración obtenida en paso (8.2.3)
- d es la concentración obtenida en paso (8.2.4)

Si la eficiencia del convertidor no es mayor al 90%, ésta se debe corregir.

Las concentraciones a, b, c, y d se determinan de acuerdo al

siguiente procedimiento:

- **9.2.1** Introducir al sistema analizador del generador de NOx, una mezcla de NO en nitrógeno (N_2) con una concentración de aproximadamente 80% del rango de operación más común. El contenido de NO₂ de la mezcla del gas debe ser menor que el 5% de la concentración de NO.
- **9.2.2** Con el. analizador de óxidos de nitrógeno en el modo NO, registrar la concentración de NO indicada por el analizador.
- **9.2.3** Conectar el suministro de O_2 ó aire cero del generador de NOx y ajustar la cantidad de flujo de tal manera que el NO indicado por el analizador sea cerca del 10% menor que el indicado en el punto 8.2.2. Registrar la concentración de NO en esta mezcla de NO + O_2 .
- **9.2.4** Encender el generador de NOx y ajustar el rango de generación de tal manera que el NO medido en el analizador sea 20% del medido en el ponto 9.2.2. Debe ser por lo menos 10% de NO no reaccionado en este paso. Registrar la concentración de NO residual.
- **9.2.5** Conmutar el analizador de óxidos de nitrógeno al modo de NOx y medir el total de NOx. Registrar este valor.
- **9.2.6** Apagar la generación de NOx, pero mantener el flujo de gas a través del sistema. El analizador de óxidos de nitrógeno indica los NOx en la mezcla de $NO + O_2$. Registrar este valor.
- **9.2.7** Desconectar el suministro de O_2 ó aire cero del generador de NOx. El analizador indica ahora los NOx en la mezcla original de NO en N_2 . Este valor no debe ser mayor que el 5% arriba del valor indicado en el punto 9.2.1.
- **9.2.8** Calcular la eficiencia del convertidor de NOx de acuerdo a la ecuación del punto 9.2 con los datos registrados del punto 9.2.1 al punto 9.2.7.
- **9.3** Mediciones de HC, CO y NOx. Dejar calentar un mínimo de 20 minutos el analizador de HC y un mínimo de dos horas las analizadares de CO y NOx. Los analizadores de tipo infrarrojo y de luminiscencia química pueden estar normalmente energizados, pero cuando no se usan, el motor del seccionador del haz infrarrojo se debe apagar y colocar en la posición de espera; asimismo, el suministro de alto voltaje de la fotoceida del bulbo del analizador de luminiscencia química se debe colocar en posición de espera. Al realizar cada medición debe llevarse a cabo la siguiente secuencia de operación.
 - 9.3.1 Ajustar a cero los analizadores. Obtener un cero estable para cada medidor de amplificación y registro.
- **9.3.2** Introducir las gases de ajuste y ajustar la ganancia del analizador de CO, la velocidad de flujo de capilaridad del analizador de HC y el suministro de alto voltaje del analizador de NOx. o la ganancia del amplificador hasta coincidir con las curvas de calibración. Para evitar correcciones, se utilizan las mismas velocidades de flujo para los gases de trabajo y calibibración, que las usadas para analizar las muestras de prueba. Los gases de ajuste deben tener concentraciones iguales a aproximadamente el 80% de la escala total.
- Si la ganancia ha cambiado significativamente en el analizador de CO, verificar el ajuste. Si es necesario, verificar esta operación después de la prueba. Indicar las concentraciones reales en una gráfica.
 - **9.3.3** Verificación de ceros: Si se requiere, repetir el procedimiento de los puntos 9.3.1 y 9.3.2.
 - **9.3.4** Verificar los flujos y presiones.
- **9.3.5** Medir la concentración en las muestras de HC, CO y NOx. Prevenir la condensación de humedad en las bolsas de recolección de muestras, haciendo la medición de las concentraciones dentro de los primeros 10 minutos, después de terminada la prueba.
 - 9.3.6 Verificar los puntos de cero y de ajuste.

10. PROCEDIMIENTO DE PRUEBA.

- **10.1** El vehículo deberá estar conforme a las especificaciones del fabricante, previo al manejo de preacondicionamiento.
- **10.2** El vehículo deberá mantenerse con el motor apagado por un período no menor de 12 h. ni mayor de 36 hr antes de la prueba, a una temperature ambiente de 293 K (20°C) y 303 K (30°C), estacionándolo en un lugar tal que

no le afecten las precipitaciones meteorológica. La temperatura ambiente durante la prueba debe mantenerse entre los límites anteriores.

- 10.3 Durante la prueba el vehículo debe recibir suficiente aire para su enfriamiento, para la cual se utiliza un ventilador de velocidad fija colocado de 20 cm a 30 cm de distancia frente a la parrilla. La capacidad máxima del ventilador debe ser de 150 m³/min, excepto en casos en que en la prueba de campo el motor reciba enfriamiento adicional, en cuyo caso se permite utilizar ventiladores adicionales para que suministren suficiente aire de enfriamiento. En el caso de vehículos con el motor en la parte posterior o en los de diseñlo especial el (o los) ventilador (es) debe(n) colocarse en posición tal que suministre(n) el aire con distribución uniforme.
- 10.4 Durante la prueba el vehículo debe estar nivelado a fin de prevenir cualquier distribución anormal de combustible.
- 10.5 En la siguiente tabla se muestran los valores de masa de inercia que deben aplicarse mediante volantes, carga eléctrica u otros medios de simulación. Si no se puede aplicar la masa de inercia equivalente que se especifica, debe usarse la masa de inercia equivalente inmediata superior sin exceder de 114 kg.
 - 10.6 Ajuste de la unidad de absorción de potencia.
- 10.6.1 La unidad de la absorción de potencia debe ajustarse para reproducir la potencia consumida por el vehículo a 80 km/h de velocidad real. Para el ajuste de la potencia por la carga de camino deberá tomarse en cuenta la fricción del dinamómetro. La relación entre la potencia absorbida por la carga de camino y la potencia de la carga de camino indicada, debe determinarse de acuerdo al procedimiento descrito en 12.1.5 o por algún otra medio disponible previamente aprobado para cada dinamómetra en lo particular.
- **10.6.2** Se debe usar la potencia correspondence a la carga de camino señalada en la tabla anterior o la obtenida según el procedimiento de selección de carga de camino segón 13.1.4.
- **10.7** La velocidad del vehículo, medida en los rodillos del dinamómetro, se considera como la velocidad real para los fines de esta prueba. El registro de velocidad contra tiempo es la validez de la prueba de dinamómetro.

Peso del vehículo	Masa de inercia quivalente en kg.	Carga de camino requerida a 80 km/h
con carga en kg.		en caballos de potencia.
De 511	454	5.9
512 a 625	454	6.5
626 a 739	680	7.1
740 a 851	895	7.7
852 a 962	910	8.3
963 a 1,080	1,025	8.8
1,081 a 1,193	1,135	9.4
1,194 a 1,305	1,230	9.9
1,306 a 1,480	1,365	10.3
1,481 a 1,705	1,590	11.2
1,706 a 1,930	1,820	12.0
1,931 a 2,160	2,040	12.7
2,161 a 2,380	2,270	13.4
2,361 a 2,610	2,500	13.9
2.,611 en adelante	2,500	14.4

Tabla 1. Automóviles de 400 a 2,727 kg de peso bruto vehicular.

- **10.8** Las llantas motrices del vehículo al colocarse en el dinamómetro, podrán inflarse a una presión de hasta 3.16 kgf/cm² (45 libras por pulgada cuadrada). Esta presión debe registrarse junto con las resultados de prueba.
 - 10.9 Colocar el vehículo con las ruedas motrices sobre el dinamómetro sin arrancar el motor.
 - 10.10 Poner a funcionar el ventilador de enfriamiento con el compartimiento del motor abierto.
- **10.11** Con la vávula de solenoide de muestreo en posición de descarga, conectar las bolsas vacías de recolección de la muestra, a la muestra diluída de gases de escape y los conectores de la linea del aire de dilución.
- **10.12** Poner a funcionar el sistema de muestreo BDP ó VFC; la bomba de desplazamiento positivo, las bombas de muestreo y el registrador de temperatura. (El intercambiador de calor del sistema de muestreo a volumen constante debe precalentarse a su temperatura de operación antes de que la prueba comience).
 - 10.13 Ajustar la velocidad de flujo de la muestra al valor deseado, como mínimo 0.014 m³/h para BDP.
 - 10.14 Conectar el, o (los) tubo(s) de escape flexible(s) al (o los) tubo(s) de escape del vehículo.
- 10.15 Simultáneamente poner a funcionar el contador de revoluciones de la bomba de desplazamiento positivo y colocar las válvulas de solenoide de muestreo para dirigir el flujo de las muestras hacia las bolsas. Arrancar el motor del vehículo, de acuerdo al procedimiento recomendado por el fabricante. Los 20 s que corresponden al período de marcha lenta inicial se empiezan a contar cuando el motor de arranque principia a operar.

- 10.16 Operación del ahogador del vehículo de prueba.
- 10.16.1 Los vehículos equipados con ahogador automático deben operarse de acuerdo a las instrucciones indicadas en el manual de operación del fabricante, incluyendo el ajuste del ahogador y el liberador automático para una rápida marcha en vacío con motor frío.
- **10.16.2** Aquellos vehículos equipados con ahogadores manuales deben operarse de acuerdo al manual de operación del fabricante.
- **10.16.3** La transmisión debe colocarse en velocidad 15 segundos después del inicio del ciclo, (véase 10.27). Si se requiere, las ruedas motrices se pueden inmovilizar mediante las frenos.
- 10.17 El operador puede usar el ahogador, el acelerador, etc., cuando sea necesario, a fin de mantener el motor funcionando.
- 10.18 El motor del vehículo debe arrancar en un período máximo de 10 s. En caso contrario, el contador de revoluciones del sistema de muestreo de volumen constante debe apagarse y colocar las válvulas de solenoide de muestreo en la posición de descarga; además la bomba de desplazamiento positivo debe apagarse o el tubo del sistema de muestreo debe desconectarse del tubo de escape.
- **10.18.1** Si la falta de arranque se debe a un error de operación, el vehículo debe programarse nuevamente partiendo del arranque en frío. Si la falla de arranque es causada por un mal funcionamiento del vehículo, se debe efectuar una acción correctiva y reiniciar la prueba dentro de los siguientes 30 min. El sistema de muestreo se pone a funcionar nuevamente en el momento en que se trate de arrancar el vehículo.

Cuando el motor empiece a funcionar, se indica la secuencia del programa de manejo; si nuevamente alguna falla debida a un mal funcionamiento del vehículo, no permite arrancarle, la prueba debe suspenderse, retirando el vehículo del dinamómetro para su corrección y posterior programación. La razón de la falla si es que fue determinada, así como la acción correctiva, deben registrarse.

- 10.19 Si el motor arranca en falso, el operador debe repetir el procedimiento recomendado de arranque.
- 10.20 Paro del motor.
- **10.20.1** Si el motor se para durante algún período de marcha lenta en vacío, debe arrancarse nuevamente y continuar la prueba. Si el motor no puede arrancar tan pronto como para permitir al vehículo seguir con la aceleración, el indicator del programa de manejo debe detenerse. Cuando el motor arranque, el indicador del programa de manejo debe ponerse en funcionamiento nuevamente.
- **10.20.2** Si el motor se para durante alguna operación que no sea la de marcha lenta en vacío, el indicador del programa de manejo debe detenerse, arrancándose nuevamente el motor y acelerando a la velocidad requerida en el punto en que se detuvo el programa de manejo. En este punto se restablece el programa de manejo y se continúa la prueba.
- **10.20.3** Si el motor no arranca en un minuto, se suspende la prueba. Se efectúa la acción correctiva necesaria y se reprograma el vehículo para una nueva prueba, informando la razón del mal funcionamiento si se determinó y la acción correctiva correspondiente.
- **10.21** Veinte segundos después de que el ciclo arranca, se inicia la aceleración del vehículo de acuerdo al programa de manejo.
- **10.22** Operar el vehículo de acuerdo al programa de manejo del dinamómetro (conforme a la gráfica del programa de manejo en el dinamómetro, considerando el tipo de transmisión del vehículo de prueba).
- 10.22.1 La tolerancia de velocidad para el programa de manejo en el dinamómetro señalado en 10.22.2 está definida por los límites superiores e inferiores. El límite superior es de 3.2 km/h, sobre lado. El límite inferior es de 3.2 km/h más bajo que el punto último inferior del trazo dentro de un segundo del tiempo señalado. Se pueden aceptar variaciones de velocidad mayores que las señaladas, siempre que no excedan de dos segundos y en una sola ocasión. Se aceptan velocidades menores que las señaladas, para aquellos vehículos que por su potencia disponible no permitan seguir su ciclo. Se aceptan variaciones de velocidad a los límites señalados debido a pérdidas de potencia del vehículo, apegándose a las indicaciones de 10.20 para el caso de vehículos, que no alcancen a seguir el trazo de manejo del segundo 187 al segundo 271, éstos deberán operarse en aceleración máxima apegándose lo más posible al trazo.
- 10.22.2 Los diagramas del anexo 7 muestran las tolerancias de velocidad para los puntos de la gráfica. La curva de la figura (a) muestra una porción del trazo de velocidad cuando ésta se incrementa o disminuye en un intervalo de dos segundos de tiempo. La curva de la figura (b) muestra el trazo de la velocidad en la cual se incluye un valor máximo o mínimo.
- **10.23** Cinco segundos después del último modo de desaceleración, detener el contador de revoluciones o la medición de flujo y simultáneamente colocar la vávula de solenoide de muestreo en posición de descarga.
- 10.24 Inmediatamente después de terminado el período de muestreo, detener el ventilador y cerrar el compartimientodel motor.

10.25 Interrumpir el flujo de gases a las bolsas de muestreo, transfiriendo el contenido de éstas al sistema de procesamiento y análisis. Esta operación debe hacerse tan rápidamente como sea posible y en ningún caso en un período mayor de diez minutos despúes de terminada la prueba en el dinamómetro.

Desconectar el (o los) tubo(s) flexible(s) de escape de vehículo., el tacómetro y las líneas de vacío y retirar éstos del dinamómetro.

- 10.27 Operación de la transmisión del vehículo.
- 10.27.1 Transmisión manual de 3 velocidades.
- 10.27.1.1 Todos los modos de prueba con excepción de los señalados, deben efectuarse en tercera velocidad.
- 10.27.1.2 Los vehículos equipados con sistema de rueda libre o con sobre marcha, deben probarse con estos sistemas fuera de operación.
- **10.27.1.3** La marcha lenta en vacío debe hacerse con la transmisión engranada y con el pedal de embrague aplicado (excepto la marcha lenta en vacío inicial).
- **10.27.1.4** El vehículo debe operarse con un mínimo de accionamiento del acelerador para mantener la velocidad deseada.
- 10.27.1.5 Los modos de aceleración deben operarse suavemente con los cambios de velocidad recomendados por el fabricante. Si el fabricante no da recomendaciones de cambios de velocidad, éstos deben realizarse de primera a segunda velocidad, a los 24 km/h y de 2a. a 3a. velocidad a los 40 km/h. El operador debe dejar de accionar el acelerador al efectuar los cambios con un mínimo de tiempo del acelerador sin accionar.
- Si el vehículo no puede acelerar a la velocidad especificada, debe acelerarse al máximo hasta alcanzar la velocidad indicada en el programa de manejo.
- 10.27.1.6 Los modos de desaceleración deben realizarse con el vehículo embragado y con la velocidad del modo anterior, usando los frenos a el acelerador según sea necesario, a fin de mantener la velocidad especificada. Para aquellos modos en los cuales se desacelere hasta marcha lenta en vacío, el pedal del embargue debe operarse cuando la velocidad alcance 25km/h, o cuando se empiece a alterar la marcha del motor, o se detecte que éste, está por detenerse.
- **10.27.1.7** Se permite la utilización de cambios de engrane descendentes al principio o durante un modo de aceleración, si éste es recomendado por el fabricante o si el motor tiende a detenerse.
 - **10.27.2** Transmisiones manuales de 4 ó 5 velocidades.
- **10.27.2.1** Se usa el mismo procedimiento empleado para la transmisión manual de 3 velocidades, al cambiar de primera a 2a. y de 2a, a 3a. Si el fabricante no recomienda en especial algún cambio de velocidades, el cambio de 3a. a 4a. debe ser a 65 km/h. La 5a. velocidad puede usarse como otra opción del fabricante.
- **10.27.2.2** Si la relación de la transmisión en primera velocidad excede 5:1, se sigue el procedimiento para transmisiones de 3 y 4 velocidades, como si la primera velocidad no existiera.
 - 10.27.3 Transmisión automatica.
- **10.27.3.1** La prueba debe llevarse a cabo con la transmisión en la velocidad más directa. La palanca de cambios de la transmisión automática puede operarse como transmisión manual, si el fabricante lo señala como opción.
- **10.27.3.2** Los modos de marcha lenta en vacío deben efectuarse con la transmisión en la velocidad más directa y las ruedas frenadas (excepto la marcha lenta en vacío inicial).
- **10.27.3.3** El vehículo debe operarse con un mínimo de accionamiento del acelerador para mantener la velocidad especificada.
- 10.27.3.4 Los modos de aceleración deben operarse suavemente, dejando que la transmisión efectúe los cambios automáticamente, en su secuencia normal. Si el vehículo no puede alcanzar la velocidad especificada, debe acelerarse al máximo hasta que coincida con el ciclo de manejo.
- **10.27.3.5** Los modos de desaceleración deben operarse con la velocidad engranada, usando los frenos o el acelerador para mantener la velocidad especificada.
 - 10.28 Se debe registrar la siguiente información en cada prueba:
 - 10.28.1 Número de la prueba.
 - **10.28.2** Fecha y hara del día.
 - **10.28.3** Nombre del operador de los instrumentos
 - **10.28.4** Nombre del operador del automóvil.
- 10.28.5 Del vehículo: marca, número de identificación, año modelo, tipo de transmisión, lectura de odómetro, cilindrada del motor, revoluciones por minuto en marcha lenta en vacío, tipo de inyección de combustible, número de carburadores, número de gargantas del carburador; si es el caso, carga, de inercia, carga de camino en caballos de potencia a 80 km/h presión de las llantas motrices y ajuste del monóxido de carbono e hidrocarburos en

marcha lenta si el caso lo permite, utilizando el método que establece la Norma Oficial Mexicana NOM-CCAP-010-ECOL (ver 2 Referencias).

- 10.26.6 Número de serie del dinamómetro y absorción de potencia de la carga de camino indicada a 80 km/h.
- **10.28.7** Presión barométrica, temperatura y humedad ambiente, además la temperatura del aire frente a la parrilla del radiador de 15 a 30 cm de distancia, durante la prueba.
- **10.28.8** Para los laboratorios que tienen consola con bomba desplazamiento positivo: la temperatura y la presión de mezcla del gas de escape y aire de dilución que entra a la bomba de desplazamiento positivo y el incremento de presión causado por la bomba.

La temperatura de la mezcla debe mantenerse con una tolerancia de \pm 3 K (\pm 3°C) sobre el punto de ajuste control de temperatura. En caso de control manual, debe registrarse continua y digitalmente.

10.28.9 Para los laboratorios que tienen consola con bomba desplazamiento positivo: El número de revoluciones acumuladas por la bomba cuando se efectúa la prueba y cuando recolecta el flujo de gases de muestra.

10.29 Lectura de las gráficas

Se determinan las concentraciones de HC, CO y NOx del aire de dilución de las muestras del gas de escape diluído en la bolsas, en base a las lecturas de las instrumentos o registradores y hacienda uso de las gráficas de calibración

apropiadas en caso de ser requeridas.

Se puede determinar la temperature promedio de la mezcla diluída de los gases de escape a partir del trazo en el registrador de la temperatura.

11. PROCEDIMIENTO PARA CALCULAR LA EMISION DE ESCAPE

El reporte final de las pruebas de emisiones deberá ser calculado mediante la siguiente ecuación:

II.1 Para automóviles, vehículos comerciales o utilitarios y ligeros hasta 3,857 kg de peso bruto vehícular:

$$Ymi = 0.43 \left(\begin{array}{c} (Yff + Yfe) \\ \hline (Dif + Dfe) \end{array} \right) + 0.57 \left(\begin{array}{c} (Yfc + Yfe) \\ \hline (Dfc + Dfe) \end{array} \right)$$

Donde:

- Ymi es la masa en peso de emisiones del contaminante i, por ejemplo HC, CO, NOx, CO2, expresada en g/km vehicular.
- Yff es la masa de emisiones calculada de la fase "fría de la prueba de arranque en frío, expresada en gramos por fase.
- Yfc es la masa de emisiones calculada de la fase "caliente" de la prueba de arranque en caliente, expresada en gramos por fase.
- Yfe es la masa de emisiones calculada de la fase "estabilizada" de la prueba arranque en frio, expresada en gramos por fase.
- Dff es la distancia medida en la fase "fria" de la prueba de arranque en frío, expresada en kilómetros.
- Dfc es la distancia medida en la fase "caliente" de la prueba de arranque en caliente, expresada en kilómetros.
- Dfe es la distancia medida en la fase "estabilizada" de la prueba arranque en frio, expresada en kilómetros.
- 11.2 La masa de contaminantes para cada fase en ambas pruebas de arranque en fria y caliente, se calculan con las siguientes ecuaciones:
- a) Masa de hidrocarburos

Hcmasa = (Vm) (densidad de HC) (HCconc/1,000,000).

HCmasa = Emisión de hidrocarburos, expresada en gramos por fase de prueba.

Densidad de HC = 0.5768 kg/m^3 (16.33 g/ft^3) asumiendo un promedio de una relación de carbón a hidrógeno de 1:1.85, a 20° C (68° F) 760 mm Hg (101.3 kPa) de presión, ó 0.444 kg/m^3 ($12.S7 \text{ g/ft}^3$) a 293 K (20° C) y 585 mm Hg (78.37 kPa) de presión.

HCconc Es la concentración de hidrocarburos de la muestra de gases diluidos corregidos, descontando lo existente en el medio ambiente, medido en ppm equivalente, (propano x 3).

$$Hcconc = Es la Hce - HCd (1 - 1/DF).$$

Donde.

HCe es la concentración de hidrocarburos de la muestra de gases diluidos en ppm equivalente. HCd es la concentración de hidrocarburos de la muestra de aire de dilución en ppm equivalente.

b) Masa de óxidos de nitrógeno.

NOxmasa = (Vm) (densidad de NOx) (KH)
$$\frac{\text{(NOxconc)}}{1,000,000}$$

NOxmasa Es la emisión de óxidos de nitrógeno, expresada en gramos por fase de prueba.

Densidad de NOx 1.913 kg/m³ (54.16 g/ft³) asumiendo qu está en la forma de bióxido de nitrógeno, a 298 K

(20°C) y 760 mm Hg (101.3 kPa) de presión, ó 1.47 kg/m³ (41.68 g/ft³) a 298 K (20°C) y 585

mm Hg (78.37 kPa) de presión.

Noxconc Concentración de óxidos de nitrógeno de la muestra de los gases diluidos corregidos,

descontando lo existente en el medio ambiente, medidos en ppm.

$$NOxconc = NOxe - NOxd (1 - 1 / DF).$$

Donde:

NOxe Es la concentración de óxidos de nitrógeno de muestra de gases diluidos, medidós en ppm.

NOxd Es la concentración de óxidos de nitrógeno de la muestra de aire de dilución, medidos en ppm.

c) Masa de monóxido de carbono.

COmasa =
$$(Vm)$$
 (densidad de CO) $\frac{COconc}{1,000,000}$

COmasa es la emisión de monóxido de carbono en gramos por fase de prueba.

Densidad

CO = $1.164 \text{ kg/m}^3 (32.97 \text{ g/ft}^3) \text{ a } 298 \text{ K } (20^{\circ}\text{C}) \text{ y } 760 \text{mmHg } (101.3 \text{ kPa}) \text{ de presión, ó } 0.897 \text{ g/m}^3 (25,37 \text{ g/ft}^3) \text{ a } 298 \text{ K } (20^{\circ}\text{C}) \text{ y } 585 \text{ mm Hg } (78.37 \text{ kPa}) \text{ de presión.}$

COconc = Concentración de monóxido de carbono de la muestra de gases diluidos corregidos, descontando lo exis-tente en el medio ambiente de vapor, de agua y CO2, expresada en ppm.

$$COconc = COe - CDd (1 - (1/DF)).$$

Donde:

COe es la concentración del monóxido de carbono del volumen de gases diluidos corregidos, descontando el vapor de agua y el bióxido de carbono, expresada en ppm. El cálculo asume una relación de carbono a hidrógeno del combustible de 1:1.85.

$$COe = (1-0.01925 CO_2 e - 0.000323R) COem$$

Dande:

COem es la concentración de monóxido de carbono en la muestra de gases de escape diluídos.

COd es la concentración de monóxido de carbono en la muestra de aire de dilución corregido,

descontando el vapor de agua y el bióxido de carbono, expresada en ppm.

$$COd = (1-0.000323R) COdm.$$

Donde:

COdm es la concentración de monóxido de carbano en la muestra de aire de dilución.

NOTA: Si el instrumento de medición de CO, es del tipo en el cual se discriminan la presencia de vapores de agua y CO₂, y la columna acondicionadora se ha eliminado, entonces COem debe ser sustituído directamente por COe y COdm por COd.

d) Masa de bióxido de carbono.

$$CO_2$$
 masa = (Vm) (densidad de CO_2) $\underline{CO_2 \text{ conc}}$

CO₂ masa es la emisión de bióxido de carbono, expresada en gramos por fase de prueba.

Densidad

 $CO_2 = 1.830 \text{ kg/m}^3 (51.81 \text{ g/ft}^3) \text{ a } 298 \text{ K } (20^{\circ}\text{C}) \text{ y } 760 \text{ mm Hg } (101.3 \text{ kPa}) \text{ de presión, ó } 1.406 \text{ kg/m}^3$

(39.87 g/ft³) a 296 K (20°C) y 585 mm Hg (78.37 kPa) de presión.

CO₂conc= es la concentración de bióxido de carbono en la muestra de gases de escape diluidos, corregidos,

descontando lo existente en el medio ambiente, expresada en porciento (%).

 CO_2 conc = CO_2 e - CO_2 d (1-1/DF).

Donde:

CO₂ e es la concentración de bióxido de carbono en la muestra de gases de escape diluidos, expresada en

porciento (%).

CO₂ d es la concentración de bióxido de carbono en la muestra de aire de dilución, expresada en

porciento(%).

beto

11.3 Cálculo de factores

$$DF = 13.4/CO_2 e + (HCe+COe) 10^{-4}$$

Donde:

DF es el factor de dilución.

KH es igual a $\frac{1}{\{1-0.0047(H-75)\}}$

Donde:

KH es el factor de corrección de humedad.

Para Unidades del Sistema Internacional (SI).

KH es igual a {1-0.0329(H-10.71)}

H es la humedad absoluta en gramos de agua por kilogramo de aire seco.

{(43.478)Ra x Pd}

H es igual a $\frac{}{\{PB - (Pd \times Ra/100)\}}$

Para unidades en el Sistema Internacional de Unidades:

H es igual a $\frac{\{(6.211)\text{Ra x P}\}}{\{\text{PB - (Pb x Ra/100)}\}}$

Ra es la humedad relativa del aire del medio ambiente, expresada en porciento (%).

Pd es la presión de vapor saturado, expresada en mm Hg (kPa) a temperatura ambiente de bulbo seco.

PB es la presión barométrica, expresada en mm Hg (kPa).

Vm es el volumen total de gases diluídos en pies cúbicos ó metros cúbicos por fase de prueba corregidos a condiciones patrón 293 K (20°C) y 760 mm Hg (101.3 kPa) ó 585 mm Hg (78.37 kPa).

Para la bomba de desplazamiento positivo de la SMVC el volumen de la mezcla es:

$$Vm = \frac{Vo \times N(PB-P4) (293 \text{ K})}{(760 \text{ mmHg}) (Tp)}$$

$$Vm = \frac{Vo \times N (PB-P4) (293 \text{ K})}{(585 \text{ mm Hg}) (Tp)}$$

Para unidades del Sistema Internacional:

$$Vm = Vo x$$

$$\frac{N (PB - P4) (293.15 K)}{(101.325 kPa) (Tp)}$$

$$Vm = Vo x$$

$$\frac{N (PB - P4) (293.15 K)}{(101.325 kPa) (Tp)}$$

Donde:

- Vo es el volumen de gases expulsados por la bomba desplazamiento positivo, expresado en pies cúbicos o metros cúbicos por revolución. Este volumen depende del diferencial de presión de la bomba de desplazamiento positivo.
- N es el número de revoluciones de la bomba desplazamiento positivo durante la fase de prueba en la cual la muestra ha sido tomada.
- PB es la presión barométrica, expresada en mm Hg (kPa).
- P4 es la presión debajo de la atmosférica medida a entrada de la bomba de desplazamiento positivo, expresada en mm Hg (kPa) (durante el modo de ralenti).
- Tp es el promedio de temperatura de los gases de escape diluídos a la entrada de la bomba de desplazamiento positivo durante la prueba, expresado en °K (°C).

12. CALCULO DE ECONOMICA O RENDIMIENTO DE COMBUSTIBLE.

El cálculo de economía o rendimiento de combustible se puede hacer con las siguientes ecuaciones:

a) EC =
$$\frac{\text{(densidad del combustible) (0.866*)}}{\text{(0.866**) HC + (0.429) CO + (0.273) CO}_2}$$

Donde:

EC es la economía o rendimiento de combustible, expresada en km/l o mpg.

HC es la masa de carbono en HC, expresada en g/km o g/milla.

CO es la masa de carbono en CO, expresada en g/km o g/milla.

CO₂ es la masa de carbono en CO₂, expresada en g/km o g/milla.

0.866* es el % en peso de carbono en el combustible.

0.866** es el % en peso de carbono en la molécula de HC

0.429 es el % en peso de carbono en la molécula de CO

0.273 es el % en peso de carbono en la molécula de CO

La densidad del combustible (gasolina) dada en g/l o g/gal a 293 K (20°C) y 760 mm H es: 739.23 g/l (2795.52 g/gal).

EC:
$$\frac{(5,174) \, (104) \, (Pec) \, (dec)}{[(Pec) \, (THC) + (0.429) \, (CO) + (0.273) \, (CO_2)] \, [(fR) \, (dec) \, (pcn) + 5,471]}$$

Donde:

Pec es el peso específico del carbón del combustible dec es la densidad específica del combustible THC son los gramos de hidrocarburos/distancia

CO son los gramos de monóxido de carbono/distancia (0.429 = Peso molecular). CO_2 son los gramos de bióxido de carbano/distancia (0.273 = Peso molecular).

Pcn es el poder calarífico neto, expresado en Btu/Lb.

fR es el factor
$$R = 0.6$$

El resultado de esta ecuación arrojará la economía de combustible en millas por galón, por lo que deberá aplicarse la siguiente ecuación para convertirla a km/l.

EC (km/l) =
$$\frac{\text{EC MPG}}{3.785}$$
 = (EC MPG) (0.425)

13. APENDICE

13.1 Observaciones

- **13.1.1** Si algunos motores no pueden dividirse en familias basándose en los criterios enlistados en el punto 3.1, se puede establecer, previa solicitud del fabricante, familias para aquéllos motores considerando los aspectos mas relacionados con sus características de emisión.
- **13.1.2** Se pueden usar tubos de muestreo adicionales para obtener registros de las concentraciones del flujo de gases diluídos de escape. En este caso se debe agregar flujo de muestra, en condiciones normales y el volumen expresado en metros cúbicos por prueba, al volumen calculado de gases diluídos.
- **13.1.3** Pueden utilizarse otros tipos de analizadores, siempre que éstos den resultados equivalentes y sean aprobados con anterioridad por la Secretaría de Desarrollo Social Instituto Nacional de Ecología.
- **13.1.4** En casos de controversia en la selección de la carga de camino, se debe usar la que el fabricante del vehículo determina, usando el procedimiento siguiente.
- 13.1.4.1 Se mide el vacío del múiltiple de admisión en un vehículo representativo de la misma clase de inercia, operando en un camino nivelado bajo condiciones balanceadas de viento y a una velocidad real de 80 km/h, a una altitud de $2.200 \text{ m} \pm 200 \text{ m}$ sobre el nivel del mar.
- **13.1.4.2** Se ajusta la potencia indicada del dinamómetro para reproducir el vacío del múltiple de admisión determinedo al operar el vehículo según el punto 13.1.4.1. Las pruebas de camino y las realizadas en el dinamómetro deben llevarse a cabo a la misma presión barométrica con una tolerancia de ± 3 mm Hg.
- **13.1.5** La potencia correspondiente a la carga de camino en el dinamómetro debe determinarse de acuerdo al siguiente procedimiento:

Centro de Calidad Ambiental

13.1.5.1 Procedimiento para fijar la carga de camino en el dinamómetro.

La energía de resistencia a determinar, incluye la friccion del dinamómetra y la absorbida por la unidad de potencia. Para medir la potencia, el dinamómetro se opera arriba del límite de la velocidad de prueba desembragando y con sus rodillos libres.

La energía del sistema se disipa en la unidad de absorción la fricción del dinamómetro, despreciando las variaciones por fricción de los rodillos, debidas al peso del vehículo en el eje motriz.

La diferencia de tiempo de desaceleración a cero en los rodillos libres, con respecto a los rodillos motrices se desprecia en el caso de dinamómetro con rodillos apareados, verificando que la velocidad en el rodillo motriz sea la indicada en el registrador de velocidad.

- **13.1.5.2** Para determinar la velocidad del rodillo motriz, se usa una quinta rueda o un contador de revoluciones u otros dispositivos apropiados.
- 13.1.5.3 Colocar un vehículo en el dinamómetro y usar el procedimiento para operar el dinamómetro.
- 13.1.5.4 Seleccionar el volante de inercia para la clase de peso del vehículo a probar.
- 13.1.5.5 Operar el dinamómetro a 80 km/h (50 millas por hora).
- **13.1.5.6** Registrar la potencia de camino indicada.
- 13.1.5.7 Acelerar el dinamómetro hasta 96 km/h (60 millas por hora).
- **13.1.5.8** Desembragar el dispositivo usado para operar en dinamómetro.
- **13.1.5.9** Registrar el tiempo que tarde el radillo motriz del dinamómetro para desacelerar de 88 km/h (55 millas por hora)
- **13.1.5.10** Ajustar la unidad de absorción de potencia a una carga diferente.
- **13.1.5.11** Repetir los pasos 13.1.5.5 a 13.1.5.10 en suficiente número de veces para cubrir el intervalo de potencia de camino utilizada, hasta estabilizar los valores.
- 13.1.5.12 Calcular la potencia absorbida por la carga camino en HP de acuerdo a la siguiente fórmula:

$$HP = \frac{1}{2} \quad \frac{Wi}{32.2} \quad \frac{V_1^2 - V_2^2}{550 t}$$

Donde:

- V₁ es la velocidad inicial, expresada en km/h (millas por hora) y es igual a 88 km/h (55 millas por hora).
- V₂ es la velocidad final, expresada en km/h (millas por hora) y es igual a 72 km/h (45 millas por hora).
- t es el tiempo transcurrido para pasar de la velocidad V1 a la velocidad V2 expresada en segundos.
- Wi es la inercia equivalente en kilogramos o libras.
- HP es la potencia absorbida por la carga de camino, expresada en caballos de potencia.

- **13.1.5.13** Graficar la potencia de la carga de camino indicada a 80 km/h contra la atencia de carga de camino a 80 km/h.
- **13.1.5.14** Obtener la potencia de carga de camino mencionada en 10.6.2 entrando a la gráfica anterior en la potencia de carga de camino indicada y determinada según 13.1.4.
- **13.1.6** El procedimiento para la calibración del flujo de los muestreadores de volumen constante en los sistemas con bomba de desplazamiento positivo, se inicia primeramente determinando el flujo del gas causado por la bomba de la siguiente manera:
- a) Determinar la caída de presión en la entrada de la bomba durante una prueba patrón.
- b) Acoplar un limitador de flujo variable, tal como una vávula de compuerta, al muestreador de volumen constante antes de la bomba de desplazamiento positivo. El sistema filtrador de aire de dilución se puede o no usar durante la calibración, dependiendo del diseño particular del muestreador de volumen constante usado.
- c) Acoplar un dispositivo de medición de flujo (eleménto de flujo laminar) después del limitador de flujo.
- d) Operar el muestreador de volumen constante diferentes presiones de entrada de la bomba (controlada por un limitador de flujo) y registrar las mediciones en 10.28.7, 10.28.8 y 10.28.9, el tiempo de prueba y las medi-ciones relativas dispositivo e flujo. Como verificación de la calibración, los datos de los puntos de registro deben encontrarse uniformemente espaciados a lo largo de las secuencias normales de operación.
- e) Calcular el flujo de gases en cada punto de la prueba mediante los datos obtenidos del dispositivo de medición de flujo.
- f) Calcular el volumen del gas a la presión y temperatura a la entrada de la bomba mediante la siguiente ecuación:

Donde:

- N son las rpm de la bomba
- V es el gasto del gas de la bomba en condiciones normales para la Ciudad de México (293 K (20°C) y 585 mm Hg), en dm3 por minuto.
- Tb es la temperatura cerca de la entrada de la bomba durante la prueba, expresada en grados kelvin.
- Pb es la presión atmosférica cerca de la entada de la bomba durante la prueba, expresada en mm Hg.
- g) Graficar Vo contra la caída de presión en la bomba (P) y ajustar a una gráfica lineal.
- h) Para verificar la calibración del muestreador de volumen constante mediante una cantidad conocida de gas, se procede de la siguiente manera:
- Cargar un pequeño recipiente con propano ó CO puro (precaución: el CO es altamente tóxico).
- Determinar la masa del recipiente con una aproximación de 0.01 gramo.
- Operar el muestreador de volumen constante de la manera usual, dejando, echar una cantidad de propano ó CO puro a sistema.
- Realizar cálculo según punto 11, excepto que la densidad del propano (0.47 g/dm³) a 2240 m sobre nivel del mar o su equivalente de acuedo a localización del laboratorio, se usan en lugar de la densidad de los HC de escape.
- Comparar la masa determinada con el muestreador de volumen constante con la masa determinada gravimétricamente.
- Encontrar y corregir cualquier discrepancia.
- **13.1.6.1** Calibración de la bomba de desplazamiento positivo.

- a) El siguiente procedimiento de calibración describe equipo, la forma de la prueba y los diversos parámetros, los cuales deben medirse para establecer el gasto de la bomba del muestreador de volumen constante (SMVC). Todos los parametros relacionados con la bomba son medidos simultáneamente los parámetros relacionadas al flujómetro, el cual es conectado en serie con la bomba. El gasto calculado patrón dm³/min. (a presión y temperatura absoluta a la entrada de bomba) puede ser graficada contra una función de correlación, la cual es el valor en una específica combinación de parámetros de la bomba.
 - La ecuación lineal que relaciona el flujo de la bomba y la función de correlación se determine de este modo. En el caso de que un SMVC tenga un impulsor de velocidad variable, una calibración debe llevarse a cabo para cada rango de velocidad.
- b) Este procedimiento de calibración esta basado en la medición de valores absolutos de los parámetros de la bomba y el flujómetro que relacionan los gastos en cada punto. Tres condiciones deben ser mantenidas para asegurar la precisión e integridad de la curva de calibración. Primero, las presiones de la bomba deben ser medidas en la bomba, en lugar de tubería externa a la entrada o a la salida de la bomba. Las tomas de presión que son montadas al centro superior y al centro inferior del cabezal impulsor de la bomba están expuestas a presiones de cavitación, y por esto, reflejan diferenciales de presión absoluta. Segundo, se debe mantener temperatura eatable durante la calibración. El elemento de flujo laminar es sumamente sensitivo a oscilaciones en la temperatura de entrada, lo cual causaría dispersión de los datos, cambios graduales (±2°F) ó 1.1°C grados centígrados en la temperatura son aceptables cuando ocurren en un periodo de varios minutos. Finalmente, todas las conexiones entre flujómetro y la bomba del SMVC deben estar absolutamente libres de fugas.
- c) Durante la prueba de emisiones de escape, la medición de estos mismas parámetros de la bomba permite al usuario calcular el gasto a partir de la ecuación de calibración.
- d) Conectar un sistema como se muestra en el anexo 4. En el sistema indicado, se requieren los siguientes datos:

SIMBOLO	UNIDADES	TOLERANCIAS			
PB	(plg. Hg)	kPa± 0.01 plg Hg (± 0.034 kPa)			
TA	(°F)	°C±.54 °F (±.28°C)			
ETI	(°F)	°C±.25 °F (±.14°C)			
EPI	(plg. H ₂ O)	KPa±.05 plg H ₂ O (±.012 kPa)			
EDP	(plg H ₂ O)	KPa .05 plg H ₂ O (.012 kPa)			
matriz del EFL Temperatura del aire a la entrada del la bomba del SMVC PTI (°F) °C±.5°F (±.28 °C)					
	PB TA ETI EPI EDP	PB (plg. Hg) TA (°F) ETI (°F) EPI (plg. H ₂ O) EDP (plg H ₂ O)			

- e) Después de conectar el sistema como se muestra en el anexo 4, ajustar el restrictor de flujo variable en la posición apertura total, encender la bomba del SMVC por 20 minutos. Anotar los datos de calibración.
- f) Reajustar la válvula del restrictor de flujo a ua condición de mayor restricción en un incremento de la presión a la entrada de la bomba aproximadamente 4 pulgadas de agua (1 kPa) que redituara en un mínimo de 6 puntos del registro para la calibración total. Permitir al sistema estabilizarse por 3 minutos y repetir la toma de datos.
- g) Análisis de los datos.
- 1) El gasto de aire QS, en cada punto de prueba se calcula en pies cúbicos por minuto a condiciones patrón del elemento del flujo laminar (70°F y 29.92 in Hg) a partir de los datos del flujometro usando el método descrito por el fabricante.
- 2) El gasto del flujo de aire se convierte a flujo de la bomba VO, expresado en decímetros cúbicos por revolución, a temperatura y presión absolutas a la entrada a la boma, mediante la siguiente ecuación:

$$VO = {Qs \over n} x {Tp \over 258} x {-29.92 \over Pp} x {28.37 dm^3 \over pie^3}$$

Donde:

VO es el flujo de la bomba expresado en dm³/revoluciones a Tp, Pp

Qs es el flujo medido patrón de aire expresado en pie³/min.

Corregidos a valores de presión y temperatura de prueba equivalentes a la altura de la Ciudad de México.

n son las revoluciones por minuto de la bomba.

Tp es la temperatura de entrada de la bomba.

Tp es igual a Pti T+ 460

Para unidades en Sistema Internacional:

$$Tp = (k) = Pti + 273$$

Pp es la presión absoluta a la entrada de la bomba, en pulg. de mercurio

$$Pp (in Hg) = PB-PPI x (Ge / 13.57)$$

Para unidades en sistema métrico:

$$Pp(kPa) = PB - PPI$$

Donde:

PB es la presión barométrica en pulgadas de mercurio (kPa).

PPI es la presión de f luido de entrada a la bomba (plg) (kPa).

Ge es la gravedad específica del fluido del manómetro respecto del agua.

3) La función de correlación en cada uno de los puntos de prueba se calcula del dato de calibración, mediante la siguiente ecuación:

$$Xo = \frac{1}{n} \sqrt{\frac{Pp}{Pe}}$$

Donde:

Xo es la función de correlación

Pp es la diferencial de presión de la entrada y salida de la bomba en pulg. de mercurio.

Pp es igual a Pe - Pp (kPa).

Pe es la presión absoluta de salida de la bomba en plg. de mercurio.

(Pe) es igual a PB + PPO (Ge/13.57) en pulgadas de Hg.

Para unidades en el Sistema Internacional:

Pe es igual a PB + PPO

Donde:

PPO es la presión de salida de la bomba en plg. de mercurio.

4) Para generar las ecuaciones de calibración se desarolla un ajuste lineal mediante las siguientes ecuaciones:

$$Vo = Do - M (Xo).$$

 $N = A - B (Pp)$

Donde:

M, A, y B son las constantes pendientes de intercepción que describen las lineas.

- h) Un sistema SMVC que tenga velocidades múltiples debe ser calibrado para cada velocidad usada. Las curvas de calibración generadas para los rangos deben ser aproximadamente paralelas y los valores de intercepción "Do" se incrementaran los mismos que descienda el rango del fluido de la bomba.
- i) Si la calibración ha sido desarrollada cuidadosamente, los valores calculados de la ecuación deben estar dentro de un rango ± 0.50 % del valor medido de "Vo". Los valores de "M" variaran de una bomba a otra, pero los valores de "Do" para bombas del mismo fabricante, modelo y rango deben tener una desviación del 3 % entre ellas, el influjo particular debido a su uso causara que el deslizamiento de la bomba decrezca, como un reflejo de los bajos valores de M. Las calibraciones deberán ser hechas al arrancar la bomba y después de un mantenimiento mayor, para asegurar la estabilidad de la razón de deslizamiento de la bomba. El análisis de los datos de la inyección de masa también refleja estabilidad en el deslizamiento de la bomba.

13.1.6.2 Calibración del Venturi de Flujo Critico VFC.

La calibración del Venturi de Flujo Crítico (VFC) se basa en la ecuación de flujo para Venturi Crítico. El flujo de gas está en función de la presión y temperatura de entrada y se calcula mediante la siguiente ecuación:

Donde:

Qs es el flujo.

Kv es el coeficiente de calibración

P es la presión absoluta.

T es la temperatura absoluta.

- a) El procedimiento de calibración descrito, establece el valor del coeficiente de calibración mediante la medición de los valores de presión, temperatura y flujo de aire.
- b) Se puede seguir el procedimiento del fabricante para calibrar las partes electrónicas del VFC.
- c) Las mediciones necesarias para la calibración del flujo son las siguientes:
- I. Calibración mediante el uso de un Venturi Subsónico.- Datos de medición para la calibración

Parámetro	Símbolo	Unidad	Tolerancias
Presión barométrica (Corregida)	PB	in Hg (kPa)	±10 in Hg (kPa)
Temperatura de aire, Dentro de la medición de flujo.	ETI	°F (°C)	±5 °F (±28°C)
Caída de presión entre la entrada y salida del venturi y medición.	EDP	In H ₂ 0(kPa)	± 05 in H ₂ 0 (±0.012 kPa)
Flujo de aire	Qs	Pie ³ /min (m ³ /min)	± 0.5% de valores reales NBS.
Vacío a la entrada del VFC	PPS	In fluido (kPa)	± 0.13 in fluido (± 0.055 kPa)
Temperatura de entrada al Venturi	Tv	°F (°C)	± 4.0 °F (±2.22°C).
Grav. esp. del fluido del Manómetro (1.75 aceite).			

- 1. Instalar el equipo como lo muestra el anexo 5 y eliminar las fugas (entre el dispositivo de medición de flujo y el Venturi de Flujo Crítico afectara seriamente la precisión de la calibración).
- 2. Colocar la vávula de mariposa variable en la posición abierta, encender el extractor y esperar a que el sistema se estabilice. Registrar los datos de todos los instrumentos.
- 3. Variar la válvula de mariposa y hacer cuando menos ocho lecturas a través del rango Crítico de Venturi.
- 4. Anáisis de datos. Los datos registrados durante la calibración se usan en el cálculo siguiente:
- La relación del flujo de aire Qs en cada punto de prueb se calcula en pies cúbicos patrón por minuto con ayuda de la tabla de medición de flujo, usando el método recomendado por el fabricante.
- Calcular los valores del coeficiente de calibración para cada punto de prueba, mediante la siguiente ecuación:

$$Kv = Qs Tv$$

$$Pv$$

- Graficar Kv como una función de la depresión a la entrada del venturi.
- Calcular un promedio de Kv y la desviación estándar. (Para un mínimo de 8 puntos en la región crítica)
- Tomar una acción correctiva, si la desviación estándar excede el 0.3 porciento del promedio de Kv.
- II. Calibración mediante el uso de (EFL) elemento de flujo laminar.- Datos de medición para la calibración.

ParAmetro	Simbolo	Unidad	Tolerancias
Presión barométrica (corregida)	PB	in Hg (kPa)	±0.01 in Hg (±0.034 kPa)
Temperatura de aire dentro de la medición de flujo	ETI	°F (°C)	±0.25°F (±0.14°C)
Depresión de EFL	EPI	in H ₂ 0 (kpa)	±0.05 in H ₂ 0 (±0.012 kPa)
Caida de presión entre la entrada y salida del Venturi de medición.	EDP	in H ₂ 0 (kPa)	±0.005 in H ₂ 0 (±0.001 kPa)
Flujo de aire	Qs	pie ³ /min (m ³ /min).	±0.5 %
Vacío a la entrada del VFC	PPI	in fluido (kPa)	±0.5 in fluido (±0.022 kPa)
Temperatura de entrada al Venturi.	Tv	°F (°C)	±0.5 °F (±0.28 °C)
Grav.esp. del fluído del manómetro. (1.75 aceite).	Ge		

- 1. Instalar el equipo como lo muestra el anexo 6 y eliminar las fugas (las fugas entre el dispositivo de medición de flujo y el venturi de flujo crítico afectarán seriamente la precisión de la calibración).
- 2. Colocar la válvula de mariposa variable en la posición abierta, encender el extractor y esperar a que,el sistema se estabilice. Registrar los datos de todos los instrumentos.
- 3. Variar la restricción de flujo y hacer cuando menos ocho lecturas a través del rango crítico del venturi.
- 4. Análisis de datos. Los datos registrados durante la calibración se usan en el cálculo siguiente:
- La relación del flujo de aire Qs, se calcula en cada punto con la ayuda de la tabla de medición de flujo, usando el método recomendado por el fabricante.
- Calcular los valores del coef iciente de calibración para cada punto de prueba, mediante la siguiente ecuación:

Donde:

Qs Es el flujo en pie³/min a condiciones estándar de 293 K, (101.325kPa) (20°C, 29.92 in Hg).

Tv Es la temperatura en la entrada del venturi °R (°K).

Pv Es la presión a la entrada del venturi (kPa) (mm Hg) = PB-PPI para unidades inglesas, Pv = PPI (Ge/13.57).

- Graficar Kv coma una función de la depresión a la entrada del venturi.
- Calcular un promedio de Kv y la desviación estándar. (Para un mínimo de 8 puntos en la región crítica).
- Tamar una acción correctiva, si la desviación estandar excede el 0.3 porciento del promedio de Kv.
- **13.1.6.3** Verificar el sistema completo, incluyendo los instrumentos para determinar su concordancia con una can-tidad de propano puro o monóxido de carbono puro introducido al sistema (precaución, el CO es extremadamente tóxico).
- **13.2** Las tablas de valores y las gráficas del ciclo urbano de manejo y del ciclo de carretera en el dinamómetro, se muestran en los anexos 8 y 9.

14. CALCULO DE LAS EMISIONES DE ESCAPE

Las emisiones de HC, CO, NOx Y CO₂ por el escape de la unidad de prueba se calculan de acuedo a las siguientes ecuaciones:

1) Masa de hidrocarburos:

Hemasa = Vm x d HC x
$$\frac{\text{cHC}}{10^6}$$

2) Masa de monoxido de carbono:

COmasa = Vm x d CO x
$$0.00$$

3) Masa de oxidos de nitrógeno:

NOxmasa = Vm x d NOx x KH x (c
$$NOx/10^6$$
)

4) Masa de dioxido de carbono:

$$CO_2$$
masa = VM x d CO_2 x (c $CO_2/100$)

Significado de los símbolos:

HCmasa es la emisión de hidrocarburos en gramos de masa para cada fase de la prueba.

dHC es la densidad de las hidrocarburos igual a 0.444 kg/m suponiendo una relación promedio de carbonohidrogeno de 1:1.85 a 585 mmHg y 293 K (20°C).

HCconc es la concentración de hidrocarburos de la muestra diluída de escape menos la concentración de hidrocarburos de la muestra de, aire en ppm de carbón equivalente por ejemplo, propano equivalente por 3

$$HCconc = HCe - HCd (1 - 1/DF)$$

Donde:

HCe es la concentración de hidrocarburos de la muestra diluída de escape.

HCd es la concentración de hidrocarburos de la muestra de aire en ppm de carbón equivalente. NOXmasa es la emisión de óxidos de nitrógeno en gramos por kilómetroen cada fase de la prueba.

d NO₂ es la densidad de óxidos de nitrógeno igual a 1.473 kg/m³ suponiendo que se encuentra en forma de

dióxido de nitrógeno a 293 K (20°C) y 585 mmHg.

NOXconc es la concentración de los óxidos de nitrógeno de la muestra diluída de gases de escape menos

concentración de óxidos de nitrógeno de la muestra de aire en ppm.

$$NOXcoc = NOXe - Noxd (1 - 1/DF)$$

Donde:

NOXe es la concentración de óxido de nitrógeno de muestra diluída de escape medida en ppm.

NOX d es la concentración de óxidos de nitrógeno de la muestra de aire, en ppm.

COmasa es la emisión de monóxido de carbono, en gramos por kilómetro en cada fase de la prueba.

d CO es la densidad de monóxido de carbono igual a 0.897 kg/m³ a 293 K y 585 mmHg.

COconc es la concentración de monóxido de carbono de muestra diluída de escape menos el vapor de agua y la

extracción de dióxido de carbono en ppm.

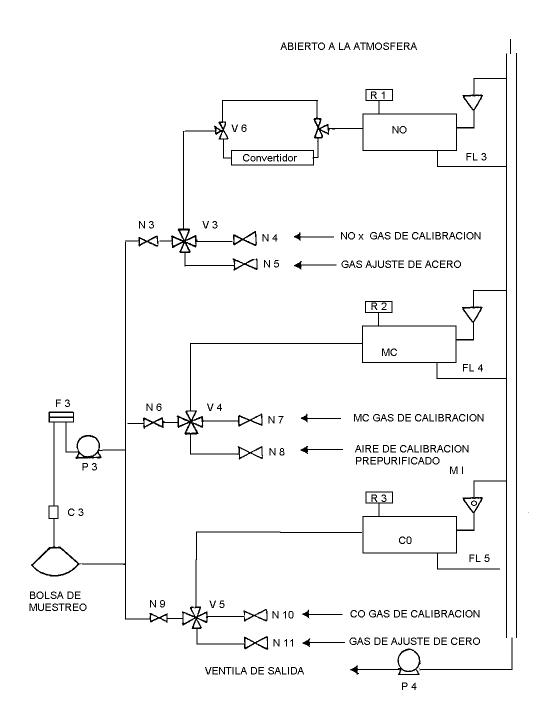
COconc = COe - COd (1-1/DF).

Donde: Coe

es la concentración de monóxido de carbono del volumen diluído de escape menos el vapor de agua y la extracción de dióxido de carbono, en ppm. en el cálculo se considera que la relación carbono-hidrógeno del combustible es 1 = 1:85.

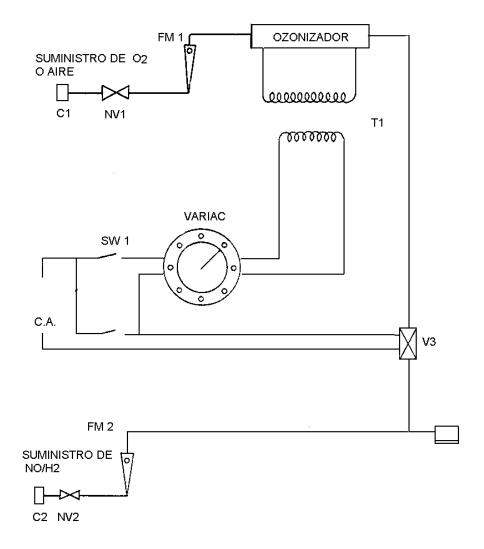
$$COe = (1 - 0.01925 CO_2 e - 0.000323 R) CO em$$

Donde:

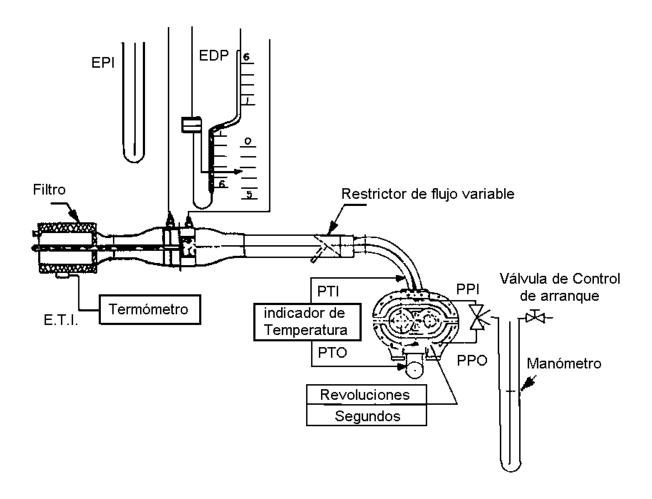

CO em es la concentración de monóxido de carbono de la muestra de gases de escape diluídos.

15. ANEXOS DE DIAGRAMAS Y TABLAS.

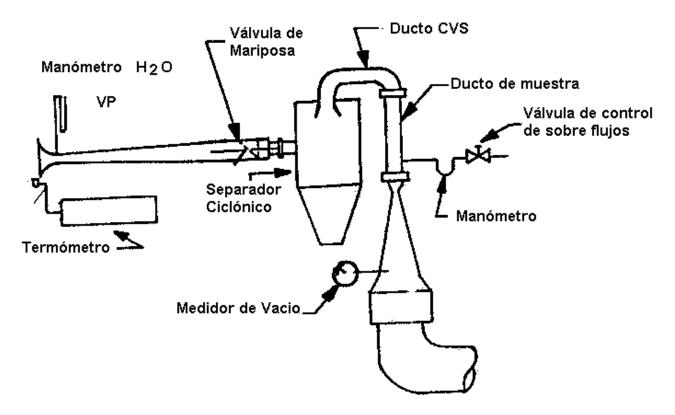
- Anexo 1. Sistema de muestrea de gases de escape.
- Anexo 2. Sistema analizador de gases de escape.
- Anexo 3. Detector de eficiencia del convertidor de NOx.
- Anexo 4. Configuración de la calidad de la bomba de desplazamiento positivo.
- Anexo 5. VFC CVS. Configuración para la calibración.
- Anexo 6. VFC. Configuración para la calibración.
- Anexo 7. Figuras.
- Anexo 8. **Tabla I.-** Valores para la gráfica del ciclo urbano de manejo en el dinamómetra, método CVS-75, en tiempo contra velocidad.
- Anexo 9. **Tabla 2.-** Valores para la gráfica del ciclo de carretera en el dinamómetro, en tiempo contra velocidad.



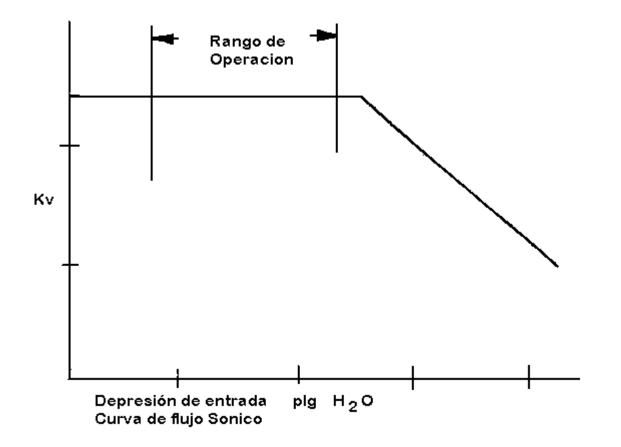
Anexo 1 .- Sistema de muestreo de gases de escape

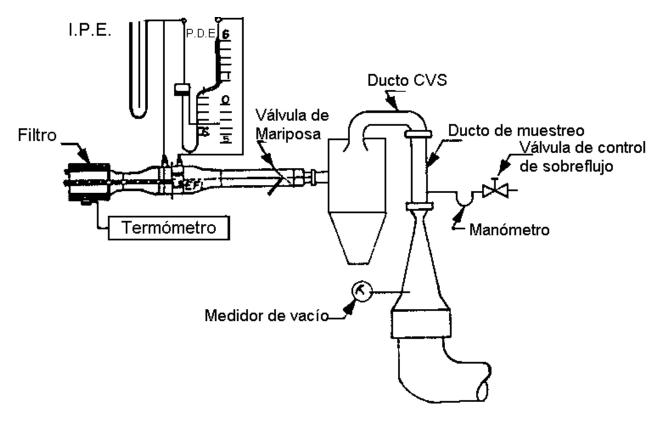

Anexo 2 .- Sistema analizador de gases de escape

Centro de Calidad Ambiental

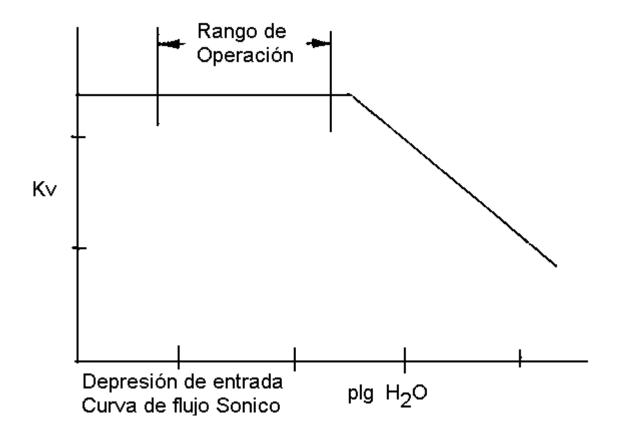


Anexo 3.- Detector de eficiencia del convertidor de NOx


Centro de Calidad Ambiental

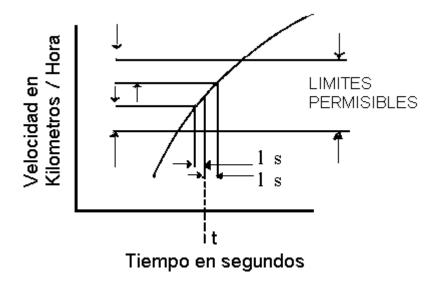
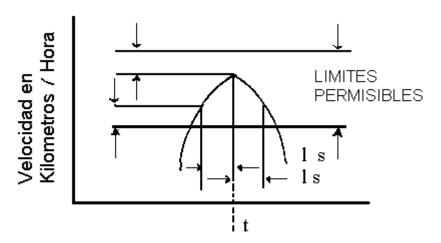


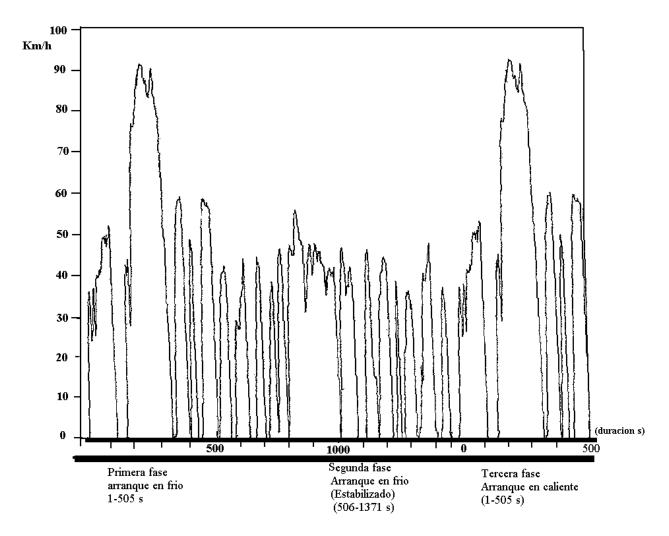
Anexo 4 .- Configuración de la calidad de la bomba de desplazamiento positivo.



Anexo 5 .- VFC - CVS .- Configuración para la calibración

Anexo 5 .- VFC .- Configuración para la calibración


Figura "a"

Tiempo en segundos

Figura "b"

Anexo .- figuras

Anexo 7 .- Ciclo de manejo Método CVS-75

ANEXO 8.-Tabla 1

Valores para la gráifica del ciclo urbano de manejo en el dinamómetro, método CVS-75, en tiempo contra velocidad.

Tiempo	Velocidad	Tiempo	Velocidad	Tiempo	Velocidad
seg	km/h	Seg	km/h	seg	km/h
0	0	45	30.7	90	49.4
1	0	46	34	91	49.1
2 3	0	47	36.5	92	48.9
3	0	48	36.9	93	48.8
4	0	49	36.5	94	46.9
5	0	50	36.4	95	49.6
6	0	51	34.3	96	48.9
7	0	52	30.6	97	46.1
8	0	53	27.5	98	47.5
9	0	54	25.4	99	48
10	0	55	25.4	100	48.8
11	0	56	28.5	101	49.4
12	0	57	31.9	102	49.7
13	0	58	34.8	103	49.9
14	0	59	37.3	104	49.7
15	0	60	38.9	105	48.9
16	0	61	39.6	106	48
17	0	62	40.1	107	48.1
18	0	63	40.2	108	48.6
19	0	64	39.6	109	49.4
20	0	65	39.4	110	50.2
21	0	66	39.8	111	51.2
22	9.5	67	39.9	112	51.8
23	13.8	66	39.8	113	52.1
24	18.5	69	39.6	114	51.8
25	23	70	39.6	115	51
26	27.2	71	40.4	116	46
27	27.8	72	41.2	117	40.7
28	29.1	73	41.4	118	35.4
29	33.3	74	40.9	119	30.1
30	34.9	75	40.1	120	24.8
31	36	76	40.2	121	19.5
32	36.2	77	40.9	122	14.2
33	35.6	78	41.8	123	8.9
34	34.6	79	41.8	124	3.5
35	33.6	80	41.4	125	0
36	32.6	81	42	126	0
37	31.9	82	43	127	0
38	27.4	83	44.3	126	0
39	24	84	46	129	0
40	24	85	47.2	130	0
41	24.5	86	48	131	0
42	24.9	87	48.4	132	0
43	25.7	88	48.9	133	0
44	27.5	89	49.4	134	0

Tiempo	Velocidad	Tiempo	Velocidad	Tiempo	Velocidad
seg	km/h	seg	km/h	seg	km/h
		C		C	
135	0	180	41.5	225	85.6
136	0	181	43.8	226	87.1
137	0	182	42.6	227	87.9
138	0	163	38.6	228	88.4
139	0	164	36.5	229	88.5
140	0	185	31.2	230	88.4
141	0	186	28.5	231	87.9
142	0	187	27.7	232	87.9
143	0	186	29.1	233	88.2
144	0	189	29.9	234	88.7
145	0	190	32.2	235	89.3
146	0	191	35.7	236	89.6
147	0	192	39.4	237	90.3
148	0	193	43.9	238	90.6
149	0	194	49.1	239	91.1
150	0	195	53.9	240	91.2
151	0	196	58.3	241	91.2
152	0	197	60	242	90.9
153	0	198	63.2	243	90.9
154	0	199	65.2	244	90.9
155	0	200	67.8	245	90.9
156	0	201	70	246	90.9
157	0	202	72.6	247	90.9
158	0	203	74	248	90.8
159	0	204	75.3	249	90.3
160	0	205	76.4	250	89.8
161	0	206	76.4	251	88.7
162	0	207	76.1	252	87.9
163	0	208	76	253	87.2
164	0	209	75.6	254	86.9
165	10.6	210	75.6	255	86.4
166	15.9	211	75.6	256	86.3
167	21.2	212	75.6	257	86.7
168	26.6	213	75.6	258	86.9
169	31.9	214	76	259	87.1
170	35.7	215	76.3	260	67.1
171	39.1	216	77.1	261	86.6
172	41.5	217	78.1	262	85.9
173	42.5	218	79	263	85.3
174	41.4	219	79.7	264	84.7
175	40.4	220	80.5	265	63.8
176	39.8	221	81.4	266	84.3
177	40.2	222	62.1	267	83.7
178	40.6	223	82.9	268	83.5
179	40.9	224	84	269	83.2

Tiempo	Velocidad	Tiempo	Velocidad	Tiempo	Velocidad
seg	km/hr	seg	Km/hr	seg	km/hr
270	82.9	317	49.1	364	54.1
271	83	318	48.3	365	55.5
272	83.4	319	46.7	366	55.7
273	83.8	320	44.3	367	56.2
274	84.5	321	39.9	368	56
275	85.3	322	34.6	369	55.5
276	86.1	323	32.3	370	55.8
277	86.9	324	30.7	371	57.1
278	88.4	325	29.8	372	57.9
279	89.2	326	27.4	373	57.9
280	89.5	327	24.9	374	57.9
281	90.1	328	20.1	375	57.9 57.9
282	90.1	329	17.4	376	57.9
283	89.8	330	12.9	377	57.9
284	88.8	331	7.6	378	58.1
285	87.7	332	2.3	379	58.6
286	86.3	333	0	380	58.7
287	84.5	334	0	381	58.6
288	82.9	335	0	382	57.9
289	82.9	336	0	383	0
290	82.9	337	0	384	54.9
291	62.9	338	0	385	53.9
292	60.6	339	0	386	50.5
293	60.5	340	0	387	46.7
294	80.6	341	0	388	41.4
295	80.5	342	0	389	37
296	79.8	343	0	390	32.7
297	79.7	344	0	391	28.2
298	79.7	345	0	392	23.3
299	79.7	346	0	393	19.3
300	79	347	0	394	14
301	78.2	348	6.9	395	8.7
302	77.4	349	12.2	396	3.4
303	76	350	17.5	397	0
304	74.2	351	22.9	398	0
305	72.4	352	27.8	399	0
306	70.5	353	32.2	400	0
307	68.6	354	36.2	401	0
308	66.8	355	38.1	402	0
309	64.9	356	40.6	403	4.2
310	62	357	42.8	404	9.5
311	59.5	358	45.2	405	14.8
312	56.6	359	48.3	406	20.1
313	54.4	360	49.6	407	25.4
314	52.3	361	50.9	408	30.7
315	50.7	362	51.7	409	36
316	49.2	363	52.3	410	40.2
411	41.2	458	50.7	505	0

Tiempo	Velocidad	Tiempo	Velocidad	Tiempo	Velocidad
seg	km/h	seg	Km/h	seg	km/h
412	44.3	459	53.1	506	0
413	46.7	460	54.1	507	0
414	48.3	461	56	508	0
415	48.4	462	56.5	509	0
416	48.3	463	57.3	510	0
417	48.3 47.8	463 464			1.9
			58.1	511	
418	47.2	465	57.9	512	5.6
419	46.3	466	58.1	513	8.9
420	45.1	467	58.3	514	10.5
421	40.2	468	57.9	515	13.7
422	34.9	469	57.5	516	15.4
423	29.6	470	57.9	517	16.9
424	24.3	471	57.9	518	19.2
425	19	472	57.3	519	22.5
426	13.7	473	57.1	520	25.7
427	8.4	474	57	521	28.5
428	3.1	475	56.6	522	30.6
429	0	476	56.6	523	32.3
430	0	477	56.6	524	33.8
431	0	478	56.6	525	35.4
432	0	479	56.6	526	37
433	0	480	56.6	527	38.3
434	0	481	56.3	528	39.4
435	0	482	56.5	529	40.1
436	0	483	56.6	530	40.2
437	0	484	57.1	531	40.2
438	0	465	56.6	532	40.2
439	0	486	56.3	533	40.2
440	0	487	56.3	534	40.2
441	0	488	56.3	535	40.2
442	0	489	56	536	40.2
443	0	490	55.7	537	41.5
444	0	491	55.8	538	41.6
445	0	492	53.9	539	0
446	0	493	51.5	540	40.6
447	0	494	48.4	541	40.2
448	5.3	495	45.1	542	40.2
449	10.6	496	41	543	40.2
450	15.9	497	36.2	544	39.3
451	21.2	498	31.9	545	37.2
452	26.6	498 499	26.6	545 546	31.9
453	31.9	500	21.2	547	26.6
453	37.2	500 501	21.2 16.6	547 548	20.6
454 455	42.5	501 502		548 549	21.2 15.9
455 456	42.5 44.7	502 503	11.6 6.4	549 550	15.9 10.6
456	44.7 46.6	503 504	6.4 1.6	550 551	5.3
552	0	599	34.1	646	3.2
553	0	600	34.8	647	7.2
333	U	000	34.0	047	1.4

Tiempo	Velocidad	Tiempo	Velocidad	Tiempo	Velocidad
seg	km/h	seg	km/h	seg	km/h
554	0	601	35.4	648	12.6
555	0	602	36	649	16.4
556	0	603	36.2	650	20.1
557	0	604	36.2	651	22.5
558	0	605	36.2	652	24.6
559	0	606	36.5	653	28.2
560	0	607	38.1	654	31.5
561	0	608	40.4	655	33.8
562	0	609	41.8	656	35.7
563	0	610	42.6	657	37.5
564	0	611	43.5	658	39.4
565	0	612	42	659	40.7
566	0	613	36.7	660	41.2
567	0	614	31.4	661	41.8
568	0	615	26.1	662	42
569	5.3	616	20.8	663	42.2
570	10.6	617	15.4	664	42.2
571	15.9	618	10.1	665	42.5
572	20.9	619	4.8	666	42.6
573	23.5	620	0	667	42.6
574	25.7	621	0	668	41.8
575	27.4	622	0	669	41
576	27.4	623	0	670	38
577	21.4	624	0	671	34.4
578	28.2	625	0	672	29.8
579	28.5	626	0	673	26.4
580	28.5	627	0	674	23.3
Sal	28.2	628	0	675	18.7
582	27.4	629	0	676	14
583	27.2	630	0	677	9.3
584	26.7	631	0	678	5.6
585	27.4	632	0	679	3.2
586	27.5	633	0	680	0
587	27.4	634	0	681	0
588	26.7	635	0	682	0
589	26.6	636	0	683	0
590	26.6	637	0	684	0
591	26.7	636	0	685	0
592	27.4	639	0	686	0
593	28.3	640	0	687	0
594	29.8	641	0	688	0
595	30.9	642	0	689	0
596	32.5	643	0	690	0
597	33.8	644	0	691	0
598	34	645	0	_	
692	0	739	39.4	786	46.3
693	0	740	41	787	45.9
694	2.3	741	42.6	788	45.5

Tiempo	Velocidad	Tiempo	Velocidad	Tiempo	Velocidad
seg	km/h	seg	km/h	seg	km/h
695	5.30	742	43.60	789	45.50
696	7.10	743	44.40	790	45.50
697	10.50	744	44.90	791	45.40
698	14.80	745	45.50	792	44.40
699	18.20	746	46.00	793	44.30
700	21.70	747	46.00	794	44.30
701	23.50	748	45.50	795	44.30
702	26.40	749	45.40	796	44.30
702	26.90	750	45.10	797	44.30
703	26.60	751	44.30	798	44.30
704	26.60	751 752	43.10	798 799	44.40
706	29.30	752 753	41.00	800	45.10
707	30.90	754	37.80	800	45.90
707		755	34.60	802	
	32.30				48.30
709	34.60	756	30.60	803	49.90
710	36.20	757 750	26.60	804	51.50
711	36.20	758 750	24.00	805	53.10
712	35.60	759	20.10	806	53.10
713	36.50	760	15.10	807	54.10
714	37.50	761	10.00	608	54.70
715	37.80	762	4.80	809	55.20
716	36.20	763	2.40	810	55.00
717	34.80	764	2.40	811	54.70
718	33.00	765	0.80	812	54.70
719	29.00	766	0.00	813	54.60
720	24.10	767	4.80	814	54.10
721	19.30	768	10.10	815	53.30
722	14.50	769	15.40	816	53.10
723	10.00	770	20.80	817	52.30
724	7.20	771	25.40	618	51.50
725	4.80	772	28.20	819	51.30
726	3.40	773	29.60	820	50.90
727	0.80	774	31.40	821	50.70
728	0.80	775	33.30	822	49.20
729	5.10	776	35.40	823	48.30
730	10.50	777	37.30	824	48.10
731	15.40	776	40.20	825	48.10
732	20.10	779	42.60	826	48.10
733	22.50	780	44.30	827	46.10
734	25.70	781	45.10	828	47.60
735	29.00	782	45.50	829	47.50
736	31.50	783	46.50	830	47.50
737	34.60	764	46.50	831	47.20
738	37.20	785	46.50	832	46.50
833	45.40	880	46.80	927	40.60
834	44.60	881	46.70	928	40.70
835	43.50	882	46.50	929	41.00

Tiempo	Velocidad	Tiempo	Velocidad	Tiempo	Velocidad
Seg	km/h	Seg	km/h	seg	km/h
836	41.00	883	45.90	930	40.60
837	38.10	884	45.20	931	40.20
838	35.40	885	45.10	932	40.30
839	33.00	886	45.10	933	40.20
840	30.90	887	44.40	934	39.80
841	30.90	888	43.80	935	39.40
842	32.30	889	42.80	936	39.10
843	33.60	890	43.50	937	39.10
844	34.40	891	44.30	938	39.40
645	35.40	892	44.70	939	40.20
846	36.40	893	45.10	940	40.20
647	37.30	894	44.70	941	39.60
848	38.60	895	45.10	942	39.60
849	40.20	896	45.10	943	38.80
850	41.60	897	45.10	944	39.40
851	42.80	898	44.60	945	40.40
852	42.80	699	44.10	946	41.20
853	43.10	900	43.30	947	40.40
854	43.50	901	42.80	946	38.60
855	43.60	902	42.60	949	35.40
856	44.70	903	42.60	950	32.30
857	45.20	904	42.60	951	27.20
858	46.30	905	42.30	952	21.90
859	46.50	906	42.20	953	16.60
860	46.70	907	42.20	954	11.30
861	46.60	908	41.70	955	6.00
862	46.70	909	41.20	956	0.60
863	45.20	910	41.20	957	0.00
864	44.30	911	41.70	958	0.00
865	43.50	912	41.50	959	0.00
866	41.50	913	41.00	960	3.20
867	40.20	914	39.60	961	8.50
868	39.40	915	37.80	962	13.80
669	39.90	916	35.70	963	19.20
870	40.40	917	34.80	964	24.50
871	41.00	918	34.80	965	28.20
672	41.40	919	34.90	966	29.90
873	42.20	920	36.00	967	32.20
874	43.30	921	37.70	968	34.00
875	44.30	922	38.60	969	35.40
876	44.70	923	38.90	970	37.00
877	45.70	924	39.30	971	39.40
678	46.70	925	40.10	972	42.30
879	47.00	926	40.40	973	44.30
974	45.20	1021	6.90	1067	43.10
975	45.70	1022	1.60	1068	44.10
976	45.90	1023	0.00	1069	44.90

Tiempo	Velocidad	Tiempo	Velocidad	Tiempo	Velocidad
seg	Km/h	seg	Km/h	seg	Km/h
977	45.90	1024	0.00	1070	45.50
978	45.90	1025	0.00	1071	45.10
979	44.60	1026	0.00	1072	44.30
980	44.30	1027	0.00	1073	43.50
981	43.80	1028	0.00	1074	43.50
982	43.10	1029	0.00	1075	42.30
983	42.60	1030	0.00	1076	39.40
984	41.80	1031	0.00	1077	36.20
985	41.40	1032	0.00	1078	34.60
986	40.60	1033	0.00	1079	33.20
987	38.60	1034	0.00	1080	29.00
988	35.40	1035	0.00	1081	24.10
989	34.60	1036	0.00	1062	19.80
990	34.60	1037	0.00	1083	17.90
991	35.10	1038	0.00	1084	17.10
992	36.20	1039	0.00	1085	16.10
993	37.00	1040	0.00	1086	15.30
994	36.70	1041	0.00	1087	14.60
995	36.70	1042	0.00	1088	14.00
996	37.00	1043	0.00	1089	13.80
997	36.50	1044	0.00	1090	14.20
998	36.50	1045	0.00	1091	14.50
999	36.50	1046	0.00	1092	14.00
1000	37.80	1047	0.00	1093	13.80
1001	38.60	1048	0.00	1094	12.90
1002	39.60	1049	0.00	1095	11.30
1003	39.90	1050	0.00	1096	8.00
1004	40.40	1051	0.00	1097	6.80
1005	41.00	1052	0.00	1098	4.20
1006	41.20	1053	1.90	1099	1.60
1007	41.00	1054	6.40	1100	0.00
1008	40.20	1055	11.70	1101	0.20
1009	38.80	1056	17.10	1102	1.00
1010	38.10	1057	22.40	1103	2.60
1011	37.30	1058	27.40	1104	5.80
1012	36.90	1059	29.80	1105	11.10
1013	36.20	1060	32.20	1106	16.10
1014	35.40	1061	35.10	1107	20.60
1015	34.80	1062	37.00	1107	22.50
1016	33.00	1063	38.60	1109	23.30
1017	28.20	1064	39.90	1110	25.70
1017	22.90	1065	41.20	1111	29.10
1019	17.50	1066	42.60	1112	32.20
1020	12.20	1000	72.00	1113	33.80
1114	34.10	1161	0.00	1268	21.10
1115	34.30	1162	0.00	1209	22.50
1116	34.40	1163	0.00	1210	24.90
1117	34.90	1164	0.00	1210	27.40

Tiempo	Velocidad	Tiempo	Velocidad	Tiempo	Velocidad
seg	Km/h	Seg	Km/h	seg	Km/h
1118	36.20	1165	0.00	1212	29.90
1119	37.00	1166	0.00	1213	31.70
1120	38.30	1167	0.00	1214	33.80
1121	39.40	1168	0.00	1215	34.60
1122	40.20	1169	3.40	1216	35.10
1123	40.10	1170	6.70	1217	35.10
1124	39.90	1171	14.00	1218	34.60
1125	40.20	1172	19.00	1219	34.10
1126	40.90	1173	24.60	1220	34.60
1127	41.50	1174	29.90	1221	35.10
1128	41.80	1175	34.00	1222	35.40
1129	42.50	1176	37.80	1223	35.20
1130	42.80	1177	37.80	1224	34.90
1131	43.30	1178	37.00	1225	34.60
1132	43.50	1179	36.20	1226	34.60
1133	43.50	1180	32.20	1227	34.40
1134	43.50	1181	26.90	1228	32.30
1135	43.30	1182	21.60	1229	31.40
1136	43.10	1183	16.30	1230	30.90
1137	43.10	1184	10.90	1231	31.50
1138	42.60	1185	5.60	1232	31.90
1139	42.50	1186	0.30	1233	32.20
1140	41.80	1187	0.00	1234	31.40
1141	41.00	1188	0.00	1235	28.20
1142	39.60	1189	0.00	1236	24.90
1143	37.80	1190	0.00	1237	20.90
1144	34.60	1191	0.00	1238	16.10
1145	32.20	1192	0.00	1239	12.90
1146	28.20	1193	0.00	1240	9.70
1147	25.70	1194	0.00	1241	6.40
1148	22.50	1195	0.00	1242	4.00
1149	17.20	1196	0.00	1243	1.10
1150	11.90	1197	0.30	1244	0.00
1151	6.60	1198	2.40	1245	0.00
1152	1.30	1199	5.60	1246	0.00
1153	0.00	1200	10.50	1247	0.00
1154	0.00	1201	15.80	1248	0.00
1155	0.00	1202	19.30	1249	0.00
1156	0.00	1203	20.80	1250	0.00
1157	0.00	1204	20.90	1251	0.00
1158	0.00	1205	20.30	1252	1.60
1159	0.00	1206	20.60	1253	1.60
1160	0.00	1207	21.10	1254	1.60
1255	1.60	1302	46.80	1349	35.20
1256	1.60	1303	46.70	1350	35.60
1257	2.60	1304	45.10	1351	36.00
1258	4.80	1305	39.80	1352	35.40

Tiempo	Velocidad	Tiempo	Velocidad	Tiempo	Velocidad
Seg	Km/h	Seg	Km/h	seg	Km/h
1259	6.40	1306	34.40	1353	34.80
1260	8.00	1307	29.10	1354	34.00
1261	10.10	1306	23.80	1355	33.00
1262	12.90	1309	18.50	1356	32.20
1263	16.10	1310	13.20	1357	31.50
1264	16.90	1311	7.90	1358	29.80
1265	15.30	1312	2.60	1359	28.20
1266	13.70	1313	0.00	1360	26.60
1267	12.20	1314	0.00	1361	24.90
1268	14.20	1315	0.00	1362	22.50
1269	17.70	1316	0.00	1363	17.70
1270	22.50	1317	0.00	1364	12.90
1271	27.40	1318	0.00	1365	8.40
1272	31.40	1319	0.00	1366	4.00
1273	33.80	1320	0.00	1367	0.00
1274	35.10	1321	0.00	1368	0.00
1275	35.70	1322	0.00	1369	0.00
1276	37.00	1323	0.00	1370	0.00
1277	38.00	1324	0.00	1371	0.00
1278	38.80	1325	0.00		
1279	39.40	1326	0.00		
1280	39.40	1327	0.00		
1281	38.60	1328	0.00		
1282	37.80	1329	0.00		
1283	37.80	1330	0.00		
1284	37.80	1331	0.00		
1285	37.80	1332	0.00		
1266	37.80	1333	0.00		
1287	37.80	1334	0.00		
1288	37.80	1335	0.00		
1269	38.60	1336	0.00		
1290	38.80	1337	0.00		
1291	39.40	1336	2.40		
1292	40.20	1339	7.70		
1293	40.90	1340	13.00		
1294	41.20	1341	18.30		
1295	41.40	1342	21.20		
1296	41.80	1343	24.30		
1297	42.20	1344	27.00		
1298	43.50	1345	29.50		
1299	44.70	1346	31.40		
1300	45.50	1347	32.70		
1301	46.70	1348	34.30		

ANEXO 9 - Tabla 2
Valores para la grafica del ciclo de carretera en el dinamómetro en tiempo contra velocidad.

t=s	V=kh/h								
0	0.0	26	57.4	52	64.3	78	75.6	104	79.0
1	0.0	27	57.7	53	65.4	79	75.4	105	79.0
2	0.0	28	57.6	54	66.6	60	75.4	106	78.6
3	3.2	29	56.7	55	67.8	81	75.4	107	78.8
4	7.8	30	56.1	56	69.0	82	75.6	108	79.0
5	13.0	31	55.5	57	69.9	83	75.7	109	79.1
6	18.1	32	55.6	58	70.7	84	75.7	110	79.3
7	23.3	33	55.9	59	71.2	65	75.9	111	79.4
8	27.8	34	56.4	60	71.6	86	75.7	112	79.5
9	31.5	35	57.4	61	72.0	67	75.6	113	79.6
10	35.0	36	58.0	62	72.2	68	75.4	114	79.6
11	36.6	37	56.2	63	72.4	69	74.6	115	79.4
12	41.5	36	58.7	64	72.5	90	74.4	116	79.0
13	43.6	39	59.0	65	73.0	91	74.3	117	78.6
14	46.0	40	59.3	66	73.7	92	74.4	118	76.1
15	48.1	41	59.5	67	74.0	93	74.8	119	77.8
16	48.2	42	59.5	68	74.4	94	75.4	120	77.3
17	49.3	43	59.5	69	74.8	95	75.7	121	76.7
18	50.6	44	59.5	70	75.3	96	76.2	122	76.2
19	51-8	45	59.5	71	75.4	97	76.7	123	76.1
20	52.9	46	59.5	72	75.6	96	77.2	124	76.4
21	53.9	47	59.6	73	75.7	99	77.5	125	76.9
22	54.8	48	60.0	74	75.9	100	78.0	126	77.0
23	55.6	49	60.4	75	76.1	101	76.5	127	77.2
24	56.1	50	62.1	76	75.9	102	79.0	128	77.0
25	56.4	51	63.2	77	75.7	103	79.1	129	77.0

t=s	V=km/h								
130	77.0	164	76.5	198	71.4	232	76.2	266	77.5
131	77.2	165	77.0	199	70.6	233	76.1	267	76.7
132	77.2	166	77.2	200	69.6	234	76.1	266	76.4
133	77.2	167	77.2	201	69.5	235	75.9	269	75.9
134	77.0	166	77.0	202	69.5	236	75.9	270	75.1
135	76.1	169	76.9	203	69.3	237	75.9	211	74.3
136	74.0	170	76.1	204	69.1	236	75.7	272	74.0
137	69.6	171	75.1	205	69.1	239	75.6	273	73.6
138	66.2	172	74.3	206	69.3	240	75.6	274	73.3
139	63.5	173	73.6	207	69.6	241	75.4	275	73.0
140	63.0	174	73.5	206	70.6	242	75.3	276	12.7
141	b2.7	175	73.2	209	70.7	243	75.4	277	72.4
142	62.7	176	73.0	210	69.9	244	75.6	276	71.9
143	62.9	177	72.6	211	68.5	245	75.9	279	71.6
144	63.5	176	72.4	212	66.7	246	76.4	260	71.1
145	64.5	179	70.7	213	65.4	247	77.0	261	69.9
146	65.9	180	69.3	214	64.3	248	77.2	282	66.6
147	67.5	181	67.8	215	64.3	249	77.2	283	67.5
148	69.3	162	66.7	216	64.8	250	77.2	284	64.5
149	70.3	183	66.7	217	65.9	251	77.2	265	62.1
150	70.9	164	67.7	216	67.5	252	77.2	266	60.3
151	71.2	165	69.0	219	66.7	253	77.3	287	57.6
152	71.4	186	69.9	220	69.3	254	77.5	288	55.6
153	71.7	187	70.6	221	69.5	255	77.5	289	54.7
154	71.9	188	70.1	222	69.8	256	77.3	290	53.5
155	72.2	189	69.6	223	70.6	257	76.1	291	52.2
156	72.7	190	69.1	224	71.2	256	78.6	292	51.0
157	73.5	191	69.3	225	71.9	259	79.0	293	49.2
158	73.8	192	69.6	226	72.5	260	79.0	294	47.6
159	74.4	193	70.6	227	73.0	261	79.0	295	46.3
160	75.3	194	71.2	228	73.6	262	79.0	296	46.1
161	75.4	195	71.7	229	74.8	263	79.0	297	46.9
162	75.6	196	72.2	230	75.4	264	76.6	296	47.4
163	75.7	197	72.0	231	75.9	265	76.6	299	50.5

t=s	V=km/h								
300	53.7	333	67.6	366	91.5	399	91.2	432	94.2
301	57.2	334	88.8	367	91.5	400	91.8	433	94.1
302	60.3	335	89.7	366	91.7	401	92.5	434	93.9
303	62.9	336	90.7	369	91.7	402	93.0	435	93.9
304	64.6	337	91.5	370	91.7	403	93.3	436	93.6
305	66.1	336	91.7	371	91.7	404	93.3	437	93.6
306	67.2	339	91.8	372	91.7	405	93.3	436	93.4
307	68.2	340	92.1	373	91.7	406	93.3	439	93.3
306	68.8	341	92.6	374	91.7	407	93.3	440	93.1
309	69.6	342	93.0	375	91.7	408	93.3	441	93.1
310	70.4	343	93.3	376	91.7	409	93.1	442	93.1
311	71.2	344	93.4	377	91.5	410	93.0	443	93.1
312	71.9	345	93.9	378	91.3	411	92.6	444	93.1
313	72.4	346	94.4	379	90.9	412	92.6	445	93.3
314	72.7	347	94.6	380	90.4	413	93.0	446	93.4
315	73.0	348	94.7	381	90.1	414	93.1	447	93.4
316	73.2	349	94.9	382	90.1	415	93.3	448	93.6
317	73.6	350	94.9	383	90.1	416	93.4	449	93.6
316	74.0	351	94.7	384	90.2	417	93.9	450	93.6
319	74.1	352	94.6	385	90.7	418	94.7	451	93.4
320	74.8	353	94.2	366	91.2	419	95.0	452	93.3
321	75.3	354	93.9	387	91.5	420	95.5	453	93.3
322	75.7	355	93.6	388	91.8	421	96.2	454	93.3
323	76.7	356	93.4	389	92.1	422	96.3	455	93.3
324	77.7	357	93.3	390	92.3	423	96.3	456	93.3
325	78.8	358	93.1	391	92.3	424	96.2	457	93.3
326	79.9	359	92.6	392	92.0	425	95.6	456	93.1
327	80.9	360	92.3	393	91.7	426	95.5	459	93.1
328	62.0	361	92.0	394	91.5	427	95.2	460	93.3
329	83.1	362	91.8	395	91.0	426	95.0	461	93.4
330	84.3	363	91.7	396	90.5	429	94.9	462	93.4
331	85.4	364	91.7	397	90.2	430	94.7	463	93.6
332	86.5	365	91.5	398	90.7	431	94.4	464	93.8

t=s	V=km/h								
465	93.8	498	86.3	531	89.7	564	65.4	597	78.6
466	93.8	499	68.1	532	89.9	565	65.1	598	78.6
467	93.6	500	90.1	533	90.1	566	84.6	599	76.1
468	93.4	501	87.8	534	90.1	567	64.3	600	77.7
469	93.3	502	87.5	535	90.1	568	83.9	601	77.2
470	93.0	503	87.3	536	90.1	569	63.6	602	77.0
471	92.5	504	87.3	537	90.1	570	83.6	603	76.9
472	91.8	505	87.2	538	90.1	571	83.6	604	76.7
473	91.7	506	87.0	539	90.1	572	83.6	605	77.0
474	91.0	507	87.0	540	90.1	573	83.6	606	77.7
475	90.2	508	87.0	541	90.1	574	83.6	607	78.8
476	90.1	509	86.8	542	90.1	575	63.6	608	79.0
477	89.7	510	86.8	543	90.1	576	83.6	609	76.8
478	89.2	511	86.8	544	90.1	577	83.5	610	78.6
479	88.8	512	86.8	545	90.1	578	83.0	611	77.2
480	86.6	513	86.6	546	90.1	579	82.7	612	75.7
461	68.4	514	86.8	547	89.9	580	82.2	613	74.3
482	86.3	515	66.8	546	89.9	581	81.5	614	74.1
483	88.3	516	86.8	549	69.9	582	81.5	615	74.1
464	88.3	517	87.0	550	89.7	583	80.2	615	74.1
485	88.3	518	87.2	551	89.4	584	79.3	616	74.3
466	88.3	519	87.6	552	89.1	585	76.3	617	75.4
487	68.3	520	88.1	553	68.6	586	77.5	616	76.9
468	88.4	521	88.3	554	88.6	587	77.3	619	78.8
489	88.4	522	68.4	555	68.4	586	77.2	620	79.9
490	86.4	523	88.6	556	86.3	589	77.2	621	81.4
491	88.4	524	88.8	557	87.8	590	77.3	622	62.6
492	86.4	525	88.6	558	87.5	591	77.8	623	63.9
493	88.4	526	68.9	559	87.2	592	78.6	624	64.7
494	86.6	527	69.1	560	67.0	593	76.8	625	65.2
495	68.6	528	89.2	561	66.5	594	79.0	626	86.2
496	86.4	529	89.4	562	85.9	595	79.0	627	86.8
497	88.3	530	69.6	563	85.7	596	78.8	628	87.0

t=s	v=km/h								
629	87.5	662	82.7	685	79.6	718	95.2	751	39.4
630	88.0	663	83.1	686	79.6	719	95.0	752	34.5
631	88.6	664	83.6	687	79.9	720	94.6	753	31.3
632	89.1	665	83.9	688	80.4	721	94.1	754	27.9
633	89.1	666	84.4	689	80.7	722	93.4	755	24.2
634	88.4	667	84.9	690	81.4	723	92.6	756	19.9
635	87.6	668	84.7	691	82.2	724	92.1	757	15.6
636	86.2	669	84.6	692	83.0	725	91.8	758	11.2
637	84.4	670	84.1	693	83.5	726	91.3	759	8.0
636	80.7	671	84.1	694	83.6	727	90.9	760	5.3
639	77.5	672	84.3	695	83.8	728	90.4	761	3.2
640	74.8	673	84.4	696	84.3	729	89.2	76	1.1
641	74.3	674	84.7	697	85.1	730	87.8	76	0.0
642	74.0	675	84.7	698	85.7	731	87.0	764	0.0
643	74.0	676	84.3	699	86.4	732	86.4	765	0.0
644	74.4	677	83.8	700	87.2	733	85.5		
645	75.3	678	83.1	701	87.6	734	85.1		
646	76.4	679	82.2	702	88.1	735	84.4		
647	77.5	680	81.2	703	88.4	736	83.6		
648	78.5	681	80.6	704	89.2	737	82.5		
649	79.6	682	80.1	705	89.9	738	81.2		
650	80.7	683	79.9	706	90.2	739	79.6		
651	81.5	684	79.8	707	90.2	740	78.0		
652	82.2	685	79.6	706	90.7	741	76.5		
653	83.1	686	79.6	709	90.9	742	75.3		
654	83.9	687	79.9	710	91.2	743	73.3		
655	84.4	688	80.4	711	91.5	744	71.1		
656	83.8	689	80.7	712	91.7	745	68.3		
657	83.0	690	81.4	713	92.1	746	63.0		
658	82.2	691	82.2	714	92.8	747	57.7		
659	82.0	692	83.0	715	93.6	748	52.4		
660	82.0	693	83.5	716	94.6	747	47.1		
661	82.2	684	83.6	717	95.0	750	43.1		

16. BIBLIOGRARFIA.

16.1 Federal Regulations

40 Cod. of Federal Regulations. Part 86 Subpart B.

16.2 Norma Oficialo Mexicana NOM-CCAT-004-ECOL-1993

Establece las niveles máximos permisibles de emisión de hidrocarburos, permisivles no quemados, monóxido de carbono y óxidos de nitrógeno provenientes del escape de vehículos automotores nuevos en planta, así como de hidrocarburos evaporativos provenientes del sistema de combustible que usan gasolina, gas licuado de petróleo (LP), gas natural y otros combustibles alternos con peso bruto vehicular de 400 a 3857 kg.

17. CONCORDANCIA CON NORMAS INTERNACIONALES.

La presente norma no concuerda con ninguna norma internacional por no existir referencia alguna en el momento de su elaboración.

MEXICO, D.F. A 1 3 DI C. 1993 EL DIRECTOR GENERAL DE NORMAS LIC. LUIS GUILLERMO IBARRA.