METHOD 8260A

VOLATILE ORGANIC COMPOUNDS BY GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS):
CAPILLARY COLUMN TECHNIQUE

1.0 SCOPE AND APPLICATION

1.1 Method 8260 is used to determine volatile organic compounds in a variety of solid waste matrices. This method is applicable to nearly all types of samples, regardless of water content, including ground water, aqueous sludges, caustic liquors, acid liquors, waste solvents, oily wastes, mousses, tars, fibrous wastes, polymeric emulsions, filter cakes, spent carbons, spent catalysts, soils, and sediments. The following compounds can be determined by this method:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS No.</th>
<th>Appropriate Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>67-64-1</td>
<td>pp</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>75-05-8</td>
<td>pp</td>
</tr>
<tr>
<td>Acrolein (Propenal)</td>
<td>107-02-8</td>
<td>pp</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>107-13-1</td>
<td>pp</td>
</tr>
<tr>
<td>Allyl alcohol</td>
<td>107-18-6</td>
<td>ht</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td>107-05-1</td>
<td>a</td>
</tr>
<tr>
<td>Benzene</td>
<td>71-43-2</td>
<td>a</td>
</tr>
<tr>
<td>Benzyl chloride</td>
<td>100-44-7</td>
<td>a</td>
</tr>
<tr>
<td>Bromoacetone</td>
<td>598-31-2</td>
<td>pp</td>
</tr>
<tr>
<td>Bromochloromethane (I.S.)</td>
<td>74-97-5</td>
<td>a</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>75-27-4</td>
<td>a</td>
</tr>
<tr>
<td>4-Bromofluorobenzene (surr.)</td>
<td>460-00-4</td>
<td>a</td>
</tr>
<tr>
<td>Bromoform</td>
<td>75-25-2</td>
<td>a</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>74-83-9</td>
<td>a</td>
</tr>
<tr>
<td>n-Butanol</td>
<td>71-36-3</td>
<td>ht</td>
</tr>
<tr>
<td>2-Butanone (MEK)</td>
<td>78-93-3</td>
<td>pp</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>75-15-0</td>
<td>pp</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>56-23-5</td>
<td>a</td>
</tr>
<tr>
<td>Chloral hydrate</td>
<td>302-17-0</td>
<td>pp</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>108-90-7</td>
<td>a</td>
</tr>
<tr>
<td>2-Chloro-1,3-butadiene</td>
<td>126-99-8</td>
<td>a</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>124-48-1</td>
<td>a</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>75-00-3</td>
<td>a</td>
</tr>
<tr>
<td>2-Chloroethanol</td>
<td>107-03-3</td>
<td>pp</td>
</tr>
<tr>
<td>bis-(2-chloroethyl) sulfide</td>
<td>505-60-2</td>
<td>pp</td>
</tr>
<tr>
<td>2-Chloroethyl vinyl ether</td>
<td>110-75-8</td>
<td>a</td>
</tr>
<tr>
<td>Chloroform</td>
<td>67-66-3</td>
<td>a</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>74-87-3</td>
<td>a</td>
</tr>
<tr>
<td>Chloroprene</td>
<td>126-99-8</td>
<td>pc</td>
</tr>
<tr>
<td>Analyte</td>
<td>CAS No.</td>
<td>Purge-and-Trap</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3-Chloropropene</td>
<td>107-05-1</td>
<td>a</td>
</tr>
<tr>
<td>3-Chloropropionitrile</td>
<td>542-76-7</td>
<td>i</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropene</td>
<td>96-12-8</td>
<td>pp</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>106-93-4</td>
<td>a</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>74-95-3</td>
<td>a</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95-50-1</td>
<td>a</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>541-73-1</td>
<td>a</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>106-46-7</td>
<td>a</td>
</tr>
<tr>
<td>cis-1,4-Dichloro-2-butene</td>
<td>1476-11-5</td>
<td>a</td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td>110-57-6</td>
<td>pp</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>75-71-8</td>
<td>a</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>75-34-3</td>
<td>a</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>107-06-2</td>
<td>a</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>75-35-4</td>
<td>a</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>156-60-5</td>
<td>a</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>78-87-5</td>
<td>a</td>
</tr>
<tr>
<td>1,3-Dichloro-2-propanol</td>
<td>96-23-1</td>
<td>pp</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>10061-01-5</td>
<td>a</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>10061-02-6</td>
<td>a</td>
</tr>
<tr>
<td>1,2,3,4-Diepoxybutane</td>
<td>1464-53-5</td>
<td>a</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>60-29-7</td>
<td>a</td>
</tr>
<tr>
<td>1,4-Difluorobenzene (I.S.)</td>
<td>540-36-3</td>
<td>a</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>123-91-1</td>
<td>pp</td>
</tr>
<tr>
<td>Epichlorohydrin</td>
<td>106-89-8</td>
<td>i</td>
</tr>
<tr>
<td>Ethanol</td>
<td>64-17-5</td>
<td>i</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>141-78-6</td>
<td>i</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>100-41-4</td>
<td>a</td>
</tr>
<tr>
<td>Ethylene oxide</td>
<td>75-21-8</td>
<td>pp</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td>97-63-2</td>
<td>a</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87-68-3</td>
<td>a</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67-72-1</td>
<td>i</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>591-78-6</td>
<td>pp</td>
</tr>
<tr>
<td>2-Hydroxypropionitrile</td>
<td>78-97-7</td>
<td>i</td>
</tr>
<tr>
<td>Iodomethane</td>
<td>74-88-4</td>
<td>a</td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td>78-83-1</td>
<td>pp</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>98-82-8</td>
<td>a</td>
</tr>
<tr>
<td>Malononitrile</td>
<td>109-77-3</td>
<td>pp</td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td>126-98-7</td>
<td>pp</td>
</tr>
<tr>
<td>Methanol</td>
<td>67-56-1</td>
<td>i</td>
</tr>
<tr>
<td>Methylene chloride (DCM)</td>
<td>75-09-2</td>
<td>a</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td>80-62-6</td>
<td>a</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>108-10-1</td>
<td>pp</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91-20-3</td>
<td>a</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98-95-3</td>
<td>a</td>
</tr>
<tr>
<td>2-Nitropropane</td>
<td>79-46-9</td>
<td>a</td>
</tr>
</tbody>
</table>
Appropriate Technique

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS No.</th>
<th>Purge-and-Trap</th>
<th>Direct Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentachloroethane</td>
<td>76-01-7</td>
<td>i</td>
<td>a</td>
</tr>
<tr>
<td>2-Picoline</td>
<td>109-06-8</td>
<td>pp</td>
<td>a</td>
</tr>
<tr>
<td>Propargyl alcohol</td>
<td>107-19-7</td>
<td>pp</td>
<td>a</td>
</tr>
<tr>
<td>β-Propiolactone</td>
<td>57-57-8</td>
<td>pp</td>
<td>a</td>
</tr>
<tr>
<td>Propionitrile (ethyl cyanide)</td>
<td>107-12-0</td>
<td>ht</td>
<td>pc</td>
</tr>
<tr>
<td>n-Propylamine</td>
<td>107-10-8</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Pyridine</td>
<td>110-86-1</td>
<td>i</td>
<td>a</td>
</tr>
<tr>
<td>Styrene</td>
<td>100-42-5</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>630-20-6</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>79-34-5</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>127-18-4</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Toluene</td>
<td>108-88-3</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>120-82-1</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>71-55-6</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>79-00-5</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>79-01-6</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>75-69-4</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>96-18-4</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>108-05-4</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>75-01-4</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>95-47-6</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>108-38-3</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>p-Xylene</td>
<td>106-42-3</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

- **a** Adequate response by this technique.
- **b** Chemical Abstract Services Registry Number.
- **ht** Method analyte only when purged at 80°C
- **i** Inappropriate technique for this analyte.
- **pc** Poor chromatographic behavior.
- **pp** Poor purging efficiency resulting in high EQLs.
- **surr** Surrogate
- **I.S.** Internal Standard

1.2 Method 8260 can be used to quantitate most volatile organic compounds that have boiling points below 200°C and that are insoluble or slightly soluble in water. Volatile water-soluble compounds can be included in this analytical technique. However, for the more soluble compounds, quantitation limits are approximately ten times higher because of poor purging efficiency. Such compounds include low-molecular-weight halogenated hydrocarbons, aromatics, ketones, nitriles, acetates, acrylates, ethers, and sulfides. See Tables 1 and 2 for lists of analytes and retention times that have been evaluated on a purge-
and-trap GC/MS system. Also, the method detection limits for 25 mL sample volumes are presented. The following analytes are also amenable to analysis by Method 8260:

<table>
<thead>
<tr>
<th>Analyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromobenzene</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
</tr>
<tr>
<td>Chloroacetonitrile</td>
</tr>
<tr>
<td>1-Chlorobutane</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
</tr>
<tr>
<td>2,2-Dichloropropene</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
</tr>
<tr>
<td>Fluorobenzene</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
</tr>
<tr>
<td>Methyl acrylate</td>
</tr>
<tr>
<td>1-Chlorohexane</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
</tr>
<tr>
<td>Crotonaldehyde</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
</tr>
<tr>
<td>Methyl-t-butyl ether</td>
</tr>
<tr>
<td>Pentafluorobenzene</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
</tr>
</tbody>
</table>

1.3 The estimated quantitation limit (EQL) of Method 8260 for an individual compound is somewhat instrument dependent. Using standard quadrupole instrumentation, limits should be approximately 5 µg/kg (wet weight) for soil/sediment samples, 0.5 mg/kg (wet weight) for wastes, and 5 µg/L for ground water (see Table 3). Somewhat lower limits may be achieved using an ion trap mass spectrometer or other instrumentation of improved design. No matter which instrument is used, EQLs will be proportionately higher for sample extracts and samples that require dilution or reduced sample size to avoid saturation of the detector.

1.4 Method 8260 is based upon a purge-and-trap, gas chromatographic/mass spectrometric (GC/MS) procedure. This method is restricted to use by, or under the supervision of, analysts experienced in the use of purge-and-trap systems and gas chromatograph/mass spectrometers, and skilled in the interpretation of mass spectra and their use as a quantitative tool.

1.5 An additional method for sample introduction is direct injection. This technique has been tested for the analysis of waste oil diluted with hexadecane 1:1 (vol/vol) and may have application for the analysis of some alcohols and aldehydes in aqueous samples.

2.0 SUMMARY OF METHOD

2.1 The volatile compounds are introduced into the gas chromatograph by the purge-and-trap method or by direct injection (in limited applications). Purged sample components are trapped in a tube containing suitable sorbent materials. When purging is complete, the sorbent tube is heated and backflushed with helium to desorb trapped sample components. The analytes are desorbed directly to a large bore capillary or cryofocussed on a capillary precolumn before being flash evaporated to a narrow bore capillary for analysis. The column is temperature programmed to separate the analytes which are then detected with a mass spectrometer (MS) interfaced to the gas chromatograph. Wide bore capillary columns require a jet separator, whereas narrow bore capillary columns can be directly interfaced to the ion source.
2.2 If the above sample introduction techniques are not applicable, a portion of the sample is dispersed in solvent to dissolve the volatile organic constituents. A portion of the solution is combined with organic-free reagent water in the purge chamber. It is then analyzed by purge-and-trap GC/MS following the normal water method.

2.3 Analytes eluted from the capillary column are introduced into the mass spectrometer via a jet separator or a direct connection. Identification of target analytes is accomplished by comparing their mass spectra with the electron impact (or electron impact-like) spectra of authentic standards. Quantitation is accomplished by comparing the response of a major (quantitation) ion relative to an internal standard with a five-point calibration curve.

2.4 The method includes specific calibration and quality control steps that replace the general requirements in Method 8000.

3.0 INTERFERENCES

3.1 Major contaminant sources are volatile materials in the laboratory and impurities in the inert purging gas and in the sorbent trap. The use of non-polytetrafluoroethylene (PTFE) thread sealants, plastic tubing, or flow controllers with rubber components should be avoided since such materials out-gas organic compounds which will be concentrated in the trap during the purge operation. Analyses of calibration and reagent blanks provide information about the presence of contaminants. When potential interfering peaks are noted in blanks, the analyst should change the purge gas source and regenerate the molecular sieve purge gas filter (Figure 1). Subtracting blank values from sample results is not permitted. If reporting values not corrected for blanks result in what the laboratory feels is a false positive for a sample, this should be fully explained in text accompanying the uncorrected data.

3.2 Interfering contamination may occur when a sample containing low concentrations of volatile organic compounds is analyzed immediately after a sample containing high concentrations of volatile organic compounds. The preventive technique is rinsing of the purging apparatus and sample syringes with two portions of organic-free reagent water between samples. After analysis of a sample containing high concentrations of volatile organic compounds, one or more calibration blanks should be analyzed to check for cross contamination. For samples containing large amounts of water soluble materials, suspended solids, high boiling compounds or high concentrations of compounds being determined, it may be necessary to wash the purging device with a soap solution, rinse it with organic-free reagent water, and then dry the purging device in an oven at 105°C. In extreme situations, the whole purge and trap device may require dismantling and cleaning. Screening of the samples prior to purge and trap GC/MS analysis is highly recommended to prevent contamination of the system. This is especially true for soil and waste samples. Screening may be accomplished with an automated headspace technique or by Method 3820 (Hexadecane Extraction and Screening of Purgeable Organics).

3.2.1 The low purging efficiency of many analytes from a 25 mL sample often results in significant concentrations remaining in the sample purge vessel after analysis. After removal of the analyzed sample aliquot
and three rinses of the purge vessel with analyte free water, it is
required that the empty vessel be subjected to a heated purge cycle prior
to the analysis of another sample in the same purge vessel to reduce
sample to sample carryover.

3.3 Special precautions must be taken to analyze for methylene chloride.
The analytical and sample storage area should be isolated from all atmospheric
sources of methylene chloride. Otherwise random background levels will result.
Since methylene chloride will permeate through PTFE tubing, all gas
chromatography carrier gas lines and purge gas plumbing should be constructed
from stainless steel or copper tubing. Laboratory clothing worn by the analyst
should be clean since clothing previously exposed to methylene chloride fumes
during liquid/liquid extraction procedures can contribute to sample
contamination.

3.4 Samples can be contaminated by diffusion of volatile organics
(particularly methylene chloride and fluorocarbons) through the septum seal into
the sample during shipment and storage. A trip blank prepared from organic-free
reagent water and carried through the sampling and handling protocol can serve
as a check on such contamination.

3.5 Use of sensitive mass spectrometers to achieve lower detection level
will increase the potential to detect laboratory contaminants as interferences.

3.6 Direct injection - Some contamination may be eliminated by baking out
the column between analyses. Changing the injector liner will reduce the
potential for cross-contamination. A portion of the analytical column may need
to be removed in the case of extreme contamination. Use of direct injection will
result in the need for more frequent instrument maintenance.

3.7 If hexadecane is added to samples or petroleum samples are analyzed,
some chromatographic peaks will elute after the target analytes. The oven
temperature program must include a post-analysis bake out period to ensure that
semi-volatile hydrocarbons are volatilized.

4.0 APPARATUS AND MATERIALS

4.1 Purge-and-trap device - aqueous samples, described in Method 5030.

4.2 Purge-and-trap device - solid samples, described in Method 5030.

4.3 Injection port liners (HP catalogue #18740-80200, or equivalent) are
modified for direct injection analysis by placing a 1-cm plug of pyrex wool
approximately 50-60 mm down the length of the injection port towards the
oven. An 0.53 mm ID column is mounted 1 cm into the liner from the oven side
of the injection port, according to manufacturer's specifications.
4.4 Gas chromatography/mass spectrometer/data system

4.4.1 Gas chromatograph - An analytical system complete with a temperature-programmable gas chromatograph suitable for splitless injection or interface to purge-and-trap apparatus. The system includes all required accessories, including syringes, analytical columns, and gases. The GC should be equipped with variable constant differential flow controllers so that the column flow rate will remain constant throughout desorption and temperature program operation. For some column configurations, the column oven must be cooled to < 30°C, therefore, a subambient oven controller may be required. The capillary column should be directly coupled to the source.

4.4.1.1 Capillary precolumn interface when using cryogenic cooling - This device interfaces the purge and trap concentrator to the capillary gas chromatograph. The interface condenses the desorbed sample components and focuses them into a narrow band on an uncoated fused silica capillary precolumn. When the interface is flash heated, the sample is transferred to the analytical capillary column.

4.4.1.1.1 During the cryofocussing step, the temperature of the fused silica in the interface is maintained at -150°C under a stream of liquid nitrogen. After the desorption period, the interface must be capable of rapid heating to 250°C in 15 seconds or less to complete the transfer of analytes.

4.4.2 Gas chromatographic columns

4.4.2.1 Column 1 - 60 m x 0.75 mm ID capillary column coated with VOCOL (Supelco), 1.5 µm film thickness, or equivalent.

4.4.2.2 Column 2 - 30 - 75 m x 0.53 mm ID capillary column coated with DB-624 (J&W Scientific), Rt₅-502.2 (RESTEK), or VOCOL (Supelco), 3 µm film thickness, or equivalent.

4.4.2.3 Column 3 - 30 m x 0.25 - 0.32 mm ID capillary column coated with 95% dimethyl - 5% diphenyl polysiloxane (DB-5, Rt₅-5, SPB-5, or equivalent), 1 µm film thickness.

4.4.2.4 Column 4 - 60 m x 0.32 mm ID capillary column coated with DB-624 (J&W Scientific), 1.8 µm film thickness, or equivalent.

4.4.3 Mass spectrometer - Capable of scanning from 35 to 300 amu every 2 sec or less, using 70 volts (nominal) electron energy in the electron impact ionization mode. The mass spectrometer must be capable of producing a mass spectrum for p-Bromofluorobenzene (BFB) which meets all of the criteria in Table 4 when 5-50 ng of the GC/MS tuning standard (BFB) is injected through the GC. To ensure sufficient precision of mass spectral data, the desirable MS scan rate allows acquisition of at least five spectra while a sample component elutes from the GC.
4.4.3.1 The ion trap mass spectrometer may be used if it is capable of axial modulation to reduce ion-molecule reactions and can produce electron impact-like spectra that match those in the EPA/NIST Library. In an ion trap mass spectrometer, because ion-molecule reactions with water and methanol may produce interferences that coelute with chloromethane and chloroethane, the base peak for both of these analytes will be at m/z 49. This ion should be used as the quantitation ion in this case. The mass spectrometer must be capable of producing a mass spectrum for BFB which meets all of the criteria in Table 3 when 5 or 50 ng are introduced.

4.4.4 GC/MS interface - Two alternatives are used to interface the GC to the mass spectrometer.

4.4.4.1 Direct coupling by inserting the column into the mass spectrometer is generally used for 0.25-0.32 mm id columns.

4.4.4.2 A separator including an all-glass transfer line and glass enrichment device or split interface is used with an 0.53 mm column.

4.4.4.3 Any enrichment device or transfer line can be used if all of the performance specifications described in Sec. 8 (including acceptable calibration at 50 ng or less) can be achieved. GC-to-MS interfaces constructed entirely of glass or of glass-lined materials are recommended. Glass can be deactivated by silanizing with dichlorodimethylsilane.

4.4.5 Data system - A computer system that allows the continuous acquisition and storage on machine-readable media of all mass spectra obtained throughout the duration of the chromatographic program must be interfaced to the mass spectrometer. The computer must have software that allows searching any GC/MS data file for ions of a specified mass and plotting such ion abundances versus time or scan number. This type of plot is defined as an Extracted Ion Current Profile (EICP). Software must also be available that allows integrating the abundances in any EICP between specified time or scan-number limits. The most recent version of the EPA/NIST Mass Spectral Library should also be available.

4.5 Microsyringes - 10, 25, 100, 250, 500, and 1,000 µL.

4.6 Syringe valve - Two-way, with Luer ends (three each), if applicable to the purging device.

4.7 Syringes - 5, 10, or 25 mL, gas-tight with shutoff valve.

4.8 Balance - Analytical, 0.0001 g, and top-loading, 0.1 g.

4.9 Glass scintillation vials - 20 mL, with Teflon lined screw-caps or glass culture tubes with Teflon lined screw-caps.

4.10 Vials - 2 mL, for GC autosampler.
4.11 Disposable pipets - Pasteur.

4.12 Volumetric flasks, Class A - 10 mL and 100 mL, with ground-glass stoppers.

4.13 Spatula - Stainless steel.

5.0 REAGENTS

5.1 Reagent grade inorganic chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all inorganic reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

5.2 Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.

5.3 Methanol, CH\(_2\)OH - Pesticide quality or equivalent, demonstrated to be free of analytes. Store apart from other solvents.

5.4 Reagent Hexadecane - Reagent hexadecane is defined as hexadecane in which interference is not observed at the method detection limit of compounds of interest.

5.4.1 In order to demonstrate that all interfering volatiles have been removed from the hexadecane, a direct injection blank must be analyzed.

5.5 Polyethylene glycol, H(OCH\(_2\)CH\(_2\))\(_n\)OH - Free of interferences at the detection limit of the target analytes.

5.6 Hydrochloric acid (1:1 v/v), HCl - Carefully add a measured volume of concentrated HCl to an equal volume of organic-free reagent water.

5.7 Stock solutions - Stock solutions may be prepared from pure standard materials or purchased as certified solutions. Prepare stock standard solutions in methanol, using assayed liquids or gases, as appropriate.

5.7.1 Place about 9.8 mL of methanol in a 10 mL tared ground-glass-stoppered volumetric flask. Allow the flask to stand, unstoppered, for about 10 minutes or until all alcohol-wetted surfaces have dried. Weigh the flask to the nearest 0.0001 g.

5.7.2 Add the assayed reference material, as described below.

5.7.2.1 Liquids - Using a 100 µL syringe, immediately add two or more drops of assayed reference material to the flask; then reweigh. The liquid must fall directly into the alcohol without contacting the neck of the flask.
5.7.2.2 Gases - To prepare standards for any compounds that boil below 30°C (e.g. bromomethane, chloroethane, chloromethane, or vinyl chloride), fill a 5 mL valved gas-tight syringe with the reference standard to the 5.0 mL mark. Lower the needle to 5 mm above the methanol meniscus. Slowly introduce the reference standard above the surface of the liquid. The heavy gas will rapidly dissolve in the methanol. Standards may also be prepared by using a lecture bottle equipped with a Hamilton Lecture Bottle Septum (#86600). Attach Teflon tubing to the side arm relief valve and direct a gentle stream of gas into the methanol meniscus.

5.7.3 Reweigh, dilute to volume, stopper, and then mix by inverting the flask several times. Calculate the concentration in milligrams per liter (mg/L) from the net gain in weight. When compound purity is assayed to be 96% or greater, the weight may be used without correction to calculate the concentration of the stock standard. Commercially prepared stock standards may be used at any concentration if they are certified by the manufacturer or by an independent source.

5.7.4 Transfer the stock standard solution into a bottle with a Teflon lined screw-cap. Store, with minimal headspace, at -10°C to -20°C and protect from light.

5.7.5 Prepare fresh standards for gases weekly or sooner if comparison with check standards indicates a problem. Reactive compounds such as 2-chloroethyl vinyl ether and styrene may need to be prepared more frequently. All other standards must be replaced after six months, or sooner if comparison with check standards indicates a problem. Both gas and liquid standards must be monitored closely by comparison to the initial calibration curve and by comparison to QC check standards. It may be necessary to replace the standards more frequently if either check exceeds a 20% drift.

5.7.6 Optionally calibration using a certified gaseous mixture can be accomplished daily utilizing commercially available gaseous analyte mixture of bromomethane, chloromethane, chloroethane, vinyl chloride, dichlorodifluoromethane and trichlorofluoromethane in nitrogen. These mixtures of documented quality are stable for as long as six months without refrigeration. (VOA-CYL III, RESTEK Corporation, Cat. #20194 or equivalent).

5.7.6.1 Preparation of Calibration Standards From a Gas Mixture

5.7.6.1.1 Before removing the cylinder shipping cap, be sure the valve is completely closed (turn clockwise). The contents are under pressure and should be used in a well-ventilated area.

5.7.6.1.2 Wrap the pipe thread end of the Luer fitting with Teflon tape. Remove the shipping cap from the cylinder and replace it with the Luer fitting.
5.7.6.1.3 Transfer half the working standard containing other analytes, internal standards, and surrogates to the purge apparatus.

5.7.6.1.4 Purge the Luer fitting and stem on the gas cylinder prior to sample removal using the following sequence:

a) Connect either the 100 μL or 500 μL Luer syringe to the inlet fitting of the cylinder.

b) Make sure the on/off valve on the syringe is in the open position.

c) Slowly open the valve on the cylinder and withdraw a full syringe volume.

d) Be sure to close the valve on the cylinder before you withdraw the syringe from the Luer fitting.

e) Expel the gas from the syringe into a well-ventilated area.

f) Repeat steps a through e one more time to fully purge the fitting.

5.7.6.1.5 Once the fitting and stem have been purged, quickly withdraw the volume of gas you require using steps 5.6.6.1.4(a) through (d). Be sure to close the valve on the cylinder and syringe before you withdraw the syringe from the Luer fitting.

5.7.6.1.6 Open the syringe on/off valve for 5 seconds to reduce the syringe pressure to atmospheric pressure. The pressure in the cylinder is ~30 psi.

5.7.6.1.7 The gas mixture should be quickly transferred into the reagent water through the female Luer fitting located above the purging vessel.

NOTE: Make sure the arrow on the 4-way valve is pointing toward the female Luer fitting when transferring the sample from the syringe. Be sure to switch the 4-way valve back to the closed position before removing the syringe from the Luer fitting.

5.7.6.1.8 Transfer the remaining half of the working standard into the purging vessel. This procedure insures that the total volume of gas mix is flushed into the purging vessel, with none remaining in the valve or lines.

5.7.6.1.9 Concentration of each compound in the cylinder is typically 0.0025 μg/μL.
5.7.6.1.10 The following are the recommended gas volumes spiked into 5 mL of water to produce a typical 5-point calibration:

<table>
<thead>
<tr>
<th>Gas Volume</th>
<th>Calibration Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 µL</td>
<td>20 µg/L</td>
</tr>
<tr>
<td>100 µL</td>
<td>50 µg/L</td>
</tr>
<tr>
<td>200 µL</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>300 µL</td>
<td>150 µg/L</td>
</tr>
<tr>
<td>400 µL</td>
<td>200 µg/L</td>
</tr>
</tbody>
</table>

5.7.6.1.11 The following are the recommended gas volumes spiked into 25 mL of water to produce a typical 5-point calibration:

<table>
<thead>
<tr>
<th>Gas Volume</th>
<th>Calibration Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 µL</td>
<td>1 µg/L</td>
</tr>
<tr>
<td>20 µL</td>
<td>2 µg/L</td>
</tr>
<tr>
<td>50 µL</td>
<td>5 µg/L</td>
</tr>
<tr>
<td>100 µL</td>
<td>10 µg/L</td>
</tr>
<tr>
<td>250 µL</td>
<td>25 µg/L</td>
</tr>
</tbody>
</table>

5.8 Secondary dilution standards - Using stock standard solutions, prepare in methanol, secondary dilution standards containing the compounds of interest, either singly or mixed together. Secondary dilution standards must be stored with minimal headspace and should be checked frequently for signs of degradation or evaporation, especially just prior to preparing calibration standards from them. Store in a vial with no headspace for one week only.

5.9 Surrogate standards - The surrogates recommended are toluene-d₈, 4-bromofluorobenzene, 1,2-dichloroethane-d₂, and dibromofluoromethane. Other compounds may be used as surrogates, depending upon the analysis requirements. A stock surrogate solution in methanol should be prepared as described above, and a surrogate standard spiking solution should be prepared from the stock at a concentration of 50-250 µg/10 mL in methanol. Each water sample undergoing GC/MS analysis must be spiked with 10 µL of the surrogate spiking solution prior to analysis.

5.9.1 If a more sensitive mass spectrometer is employed to achieve lower detection levels, more dilute surrogate solutions may be required.

5.10 Internal standards - The recommended internal standards are fluorobenzene, chlorobenzene-d₆, and 1,4-dichlorobenzene-d₄. Other compounds may be used as internal standards as long as they have retention times similar to the compounds being detected by GC/MS. Prepare internal standard stock and secondary dilution standards in methanol using the procedures described in Secs. 5.7 and 5.8. It is recommended that the secondary dilution standard should be prepared at a concentration of 25 mg/L of each internal standard compound. Addition of 10 µL of this standard to 5.0 mL of sample or calibration standard would be the equivalent of 50 µg/L.
5.10.1 If a more sensitive mass spectrometer is employed to achieve lower detection levels, more dilute internal standard solutions may be required. Area counts of the internal standard peaks should be between 50-200% of the area of the target analytes in the mid-point calibration analysis.

5.11 4-Bromofluorobenzene (BFB) standard - A standard solution containing 25 ng/µL of BFB in methanol should be prepared.

5.11.1 If a more sensitive mass spectrometer is employed to achieve lower detection levels, a more dilute BFB standard solution may be required.

5.12 Calibration standards - Calibration standards at a minimum of five concentrations should be prepared from the secondary dilution of stock standards (see Secs. 5.7 and 5.8). Prepare these solutions in organic-free reagent water. One of the concentrations should be at a concentration near, but above, the method detection limit. The remaining concentrations should correspond to the expected range of concentrations found in real samples but should not exceed the working range of the GC/MS system. Each standard should contain each analyte for detection by this method. It is EPA's intent that all target analytes for a particular analysis be included in the calibration standard(s). However, these target analytes may not include the entire List of Analytes (Sec. 1.1) for which the method has been demonstrated. However, the laboratory shall not report a quantitative result for a target analyte that was not included in the calibration standard(s). Calibration standards must be prepared daily.

5.13 Matrix spiking standards - Matrix spiking standards should be prepared from volatile organic compounds which will be representative of the compounds being investigated. At a minimum, the matrix spike should include 1,1-dichloroethene, trichloroethene, chlorobenzene, toluene, and benzene. It is desirable to perform a matrix spike using compounds found in samples. Some permits may require spiking specific compounds of interest, especially if they are polar and would not be represented by the above listed compounds. The standard should be prepared in methanol, with each compound present at a concentration of 250 µg/10.0 mL.

5.13.1 If a more sensitive mass spectrometer is employed to achieve lower detection levels, more dilute matrix spiking solutions may be required.

5.14 Great care must be taken to maintain the integrity of all standard solutions. It is recommended all standards in methanol be stored at -10°C to -20°C in amber bottles with Teflon lined screw-caps.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 See the introductory material to this chapter, Organic Analytes, Sec. 4.1.
7.0 PROCEDURE

7.1 Three alternate methods are provided for sample introduction. All internal standards, surrogates, and matrix spikes (when applicable) must be added to samples before introduction.

7.1.1 Direct injection - in very limited application, (e.g., volatiles in waste oil or aqueous process wastes) direct injection of aqueous samples or samples diluted according to Method 3585 may be appropriate. Direct injection has been used for the analysis of volatiles in waste oil (diluted 1:1 with hexadecane) and for determining if the sample is ignitable (aqueous injection, Methods 1010 or 1020). Direct injection is only permitted for the determination of volatiles at the toxicity characteristic (TC) regulatory limits, at concentrations in excess of 10,000 µg/L, or for water-soluble compounds that do not purge.

7.1.2 Purge-and-trap for aqueous samples, see Method 5030 for details.

7.1.3 Purge-and-trap for solid samples, see Method 5030 for details.

7.2 Recommended Chromatographic conditions

7.2.1 General:

Injector temperature: 200-225°C
Transfer line temperature: 250-300°C

7.2.2 Column 1 (A sample chromatogram is presented in Figure 5)

Carrier gas (He) flow rate: 15 mL/min
Initial temperature: 10°C, hold for 5 minutes
Temperature program: 6°C/min to 160°C
Final temperature: 160°C, hold until all expected compounds have eluted.

7.2.3 Column 2, Cryogenic cooling (A sample chromatogram is presented in Figure 6)

Carrier gas (He) flow rate: 15 mL/min
Initial temperature: 10°C, hold for 5 minutes
Temperature program: 6°C/min to 160°C
Final temperature: 160°C, hold until all expected compounds have eluted.

7.2.4 Column 2, Non-cryogenic cooling (A sample chromatogram is presented in Figure 7). It is recommended that carrier gas flow and split and make-up gases be set using performance of standards as guidance. Set the carrier gas head pressure to = 10 psi and the split to = 30 mL/min. Optimize the make-up gas flow for the separator (approximately 30 mL/min) by injecting BFB, and determining the optimum response when varying the make-up gas. This will require several injections of BFB. Next, make several injections of the volatile working standard with all analytes of
interest. Adjust the carrier and split to provide optimum chromatography and response. This is an especially critical adjustment for the volatile gas analytes. The head pressure should optimize between 8-12 psi and the split between 20-60 mL/min. The use of the splitter is important to minimize the effect of water on analyte response, to allow the use of a larger volume of helium during trap desorption, and to slow column flow.

Initial temperature: 45°C, hold for 2 minutes
Temperature program: 8°C/min to 200°C
Final temperature: 200°C, hold for 6 minutes.

A trap preheated to 150°C prior to trap desorption is required to provide adequate chromatography of the gas analytes.

7.2.5 Column 3 (A sample chromatogram is presented in Figure 8)

Carrier gas (He) flow rate: 4 mL/min
Initial temperature: 10°C, hold for 5 minutes
Temperature program: 6°C/min to 70°C, then 15°C/min to 145°C
Final temperature: 145°C, hold until all expected compounds have eluted.

7.2.6 Direct injection - Column 2

Carrier gas (He) flow rate: 4 mL/min
Column: J&W DB-624, 70m x 0.53 mm
Initial temperature: 40°C, hold for 3 minutes
Temperature program: 8°C/min
Final temperature: 260°C, hold until all expected compounds have eluted.

Column Bake out (direct inj): 75 minutes
Injector temperature: 200-225°C
Transfer line temperature: 250-300°C

7.2.7 Direct Split Interface - Column 4

Carrier gas (He) flow rate: 1.5 mL/min
Initial temperature: 35°C, hold for 2 minutes
Temperature program: 4°C/min to 50°C
10°C/min to 220°C
Final temperature: 220°C, hold until all expected compounds have eluted
Split ratio: 100:1
Injector temperature: 125°C

7.3 Initial calibration - the recommended MS operating conditions

Mass range: 35-260 amu
Scan time: 0.6-2 sec/scan
Source temperature: According to manufacturer's specifications
Ion trap only: Set axial modulation, manifold temperature, and emission current to manufacturer's recommendations

7.3.1 Each GC/MS system must be hardware-tuned to meet the criteria in Table 4 for a 5-50 ng injection or purging of 4-bromofluorobenzene (2 µL injection of the BFB standard). Analyses must not begin until these criteria are met.

7.3.2 Set up the purge-and-trap system as outlined in Method 5030 if purge-and-trap analysis is to be utilized. A set of at least five calibration standards containing the method analytes is needed. One calibration standard should contain each analyte at a concentration approaching but greater than the method detection limit (Table 1) for that compound; the other calibration standards should contain analytes at concentrations that define the range of the method. Calibration should be done using the sample introduction technique that will be used for samples. For Method 5030, the purging efficiency for 5 mL of water is greater than for 25 mL. Therefore, develop the standard curve with whichever volume of sample that will be analyzed.

7.3.2.1 To prepare a calibration standard for purge-and-trap or aqueous direct injection, add an appropriate volume of a secondary dilution standard solution to an aliquot of organic-free reagent water in a volumetric flask. Use a microsyringe and rapidly inject the alcoholic standard into the expanded area of the filled volumetric flask. Remove the needle as quickly as possible after injection. Mix by inverting the flask three times only. Discard the contents contained in the neck of the flask. Aqueous standards are not stable and should be prepared daily. Transfer 5.0 mL (or 25 mL if lower detection limits are required) of each standard to a gas tight syringe along with 10 µL of internal standard. Then transfer the contents to a purging device or syringe. Perform purge-and-trap or direct injection as outlined in Method 5030.

7.3.2.2 To prepare a calibration standard for direct injection analysis of oil, dilute standards in hexadecane.

7.3.3 Tabulate the area response of the characteristic ions (see Table 5) against concentration for each compound and each internal standard. Calculate response factors (RF) for each compound relative to one of the internal standards. The internal standard selected for the calculation of the RF for a compound should be the internal standard that has a retention time closest to the compound being measured (Sec. 7.6.2). The RF is calculated as follows:
RF = \frac{(A_x C_{is})}{(A_{is} C_x)}

where:

- A_x = Area of the characteristic ion for the compound being measured.
- A_{is} = Area of the characteristic ion for the specific internal standard.
- C_{is} = Concentration of the specific internal standard.
- C_x = Concentration of the compound being measured.

7.3.4 The average RF must be calculated and recorded for each compound using the five RF values calculated for each compound from the initial (5-point) calibration curve. A system performance check should be made before this calibration curve is used. Five compounds (the System Performance Check Compounds, or SPCCs) are checked for a minimum average relative response factor. These compounds are chloromethane; 1,1-dichloroethane; bromoform; 1,1,2,2-tetrachloroethane; and chlorobenzene. These compounds are used to check compound instability and to check for degradation caused by contaminated lines or active sites in the system. Examples of these occurrences are:

7.3.4.1 Chloromethane - This compound is the most likely compound to be lost if the purge flow is too fast.

7.3.4.2 Bromoform - This compound is one of the compounds most likely to be purged very poorly if the purge flow is too slow. Cold spots and/or active sites in the transfer lines may adversely affect response. Response of the quantitation ion (m/z 173) is directly affected by the tuning of BFβ at ions m/z 174/176. Increasing the m/z 174/176 ratio relative to m/z 95 may improve bromoform response.

7.3.4.3 Tetrachloroethane and 1,1-dichloroethane - These compounds are degraded by contaminated transfer lines in purge-and-trap systems and/or active sites in trapping materials.

7.3.5 Using the RFs from the initial calibration, calculate and record the percent relative standard deviation (%RSD) for all compounds. The percent RSD is calculated as follows:

\[
% \text{RSD} = \frac{SD}{RF_x} \times 100\%
\]

where:

- RSD = Relative standard deviation.
- RF_x = mean of 5 initial RFs for a compound.
- SD = standard deviation of the 5 initial RFs for a compound.
\[SD = \sqrt{\frac{\sum_{i=1}^{N} (RF_i - RF)^2}{n-1}} \]

where:
- \(RF_i \) = RF for each of the 5 calibration levels
- \(N \) = number of RF values (i.e., 5)

The percent relative standard deviation should be less than 15% for each compound. However, the \%RSD for each individual Calibration Check Compound (CCC) must be less than 30%. The CCCs are:

1,1-Dichloroethene,
Chloroform,
1,2-Dichloropropane,
Toluene,
Ethylbenzene, and
Vinyl chloride.

7.3.5.1 If a \%RSD greater than 30 percent is measured for any CCC, then corrective action to eliminate a system leak and/or column reactive sites is required before reattempting calibration.

7.3.6 Linearity - If the \%RSD of any compound is 15% or less, then the relative response factor is assumed to be constant over the calibration range, and the average relative response factor may be used for quantitation.

7.3.6.1 If the \%RSD of any compound is greater than 15%, construct calibration curves of area ratio (A/A₀) versus concentration using first or higher order regression fit of the five calibration points. The analyst should select the regression order which introduces the least calibration error into the quantitation. The use of calibration curves is a recommended alternative to average response factor calibration (Sec. 7.6.2.4), and a useful diagnostic of standard preparation accuracy and absorption activity in the chromatographic system.

7.3.7 These curves are verified each shift by purging a performance standard. Recalibration is required only if calibration and on-going performance criteria cannot be met.

7.4 GC/MS calibration verification

7.4.1 Prior to the analysis of samples, inject or purge 5-50 ng of the 4-bromofluorobenzene standard following Method 5030. The resultant mass spectra for the BFB must meet all of the criteria given in Table 4 before sample analysis begins. These criteria must be demonstrated each 12-hour shift.
7.4.2 The initial calibration curve (Sec. 7.3) for each compound of interest must be checked and verified once every 12 hours during analysis with the introduction technique used for samples. This is accomplished by analyzing a calibration standard that is at a concentration near the midpoint concentration for the working range of the GC/MS by checking the SPCC and CCC.

7.4.3 System Performance Check Compounds (SPCCs) - A system performance check must be made each 12 hours. If the SPCC criteria are met, a comparison of relative response factors is made for all compounds. This is the same check that is applied during the initial calibration. If the minimum relative response factors are not met, the system must be evaluated, and corrective action must be taken before sample analysis begins. Some possible problems are standard mixture degradation, injection port inlet contamination, contamination at the front end of the analytical column, and active sites in the column or chromatographic system.

7.4.3.1 The minimum relative response factor for volatile SPCCs are as follows:

Chloromethane 0.10
1,1-Dichloroethane 0.10
Bromoform >0.10
Chlorobenzene 0.30
1,1,2,2-Tetrachloroethane 0.30

7.4.4 Calibration Check Compounds (CCCs) - After the system performance check is met, CCCs listed in Sec. 7.3.5 are used to check the validity of the initial calibration.

Calculate the percent drift using the following equation:

\[
\% \text{ Drift} = \frac{(C_i - C_c)}{C_i} \times 100
\]

where:

- \(C_i \) = Calibration Check Compound standard concentration.
- \(C_c \) = Measured concentration using selected quantitation method.

If the percent drift for each CCC is less than 20%, the initial calibration is assumed to be valid. If the criterion is not met (> 20% drift), for any one CCC, corrective action must be taken. Problems similar to those listed under SPCCs could affect this criterion. If no source of the problem can be determined after corrective action has been taken, a new five point calibration MUST be generated. This criterion MUST be met before quantitative sample analysis begins. If the CCCs are not required analytes by the permit, then all required analytes must meet the 20% drift criterion.

7.4.5 The internal standard responses and retention times in the check calibration standard must be evaluated immediately after or during data acquisition. If the retention time for any internal standard changes
by more than 30 seconds from the last calibration check (12 hours), the chromatographic system must be inspected for malfunctions and corrections must be made, as required. If the EICP area for any of the internal standards changes by a factor of two (-50% to +100%) from the last daily calibration check standard, the mass spectrometer must be inspected for malfunctions and corrections must be made, as appropriate. When corrections are made, reanalysis of samples analyzed while the system was malfunctioning is necessary.

7.5 GC/MS analysis

7.5.1 It is highly recommended that the extract be screened on a headspace-GC/FID (Methods 3810/8015), headspace-GC/PID/ELCD (Methods 3810/8021), or waste dilution-GC/PID/ELCD (Methods 3585/8021) using the same type of capillary column. This will minimize contamination of the GC/MS system from unexpectedly high concentrations of organic compounds. Use of screening is particularly important when this method is used to achieve low detection levels.

7.5.2 All samples and standard solutions must be allowed to warm to ambient temperature before analysis. Set up the purge-and-trap system as outlined in Method 5030 if purge-and-trap introduction will be used.

7.5.3 BFB tuning criteria and GC/MS calibration verification criteria must be met before analyzing samples.

7.5.3.1 Remove the plunger from a 5 mL syringe and attach a closed syringe valve. If lower detection limits are required, use a 25 mL syringe. Open the sample or standard bottle, which has been allowed to come to ambient temperature, and carefully pour the sample into the syringe barrel to just short of overflowing. Replace the syringe plunger and compress the sample. Open the syringe valve and vent any residual air while adjusting the sample volume to 5.0 mL.

7.5.4 The process of taking an aliquot destroys the validity of aqueous and soil samples for future analysis; therefore, if there is only one VOA vial, the analyst should prepare a second aliquot for analysis at this time to protect against possible loss of sample integrity. This second sample is maintained only until such time when the analyst has determined that the first sample has been analyzed properly. For aqueous samples, filling one 20 mL syringe would require the use of only one syringe. If a second analysis is needed from a syringe, it must be analyzed within 24 hours. Care must be taken to prevent air from leaking into the syringe.

7.5.4.1 The following procedure is appropriate for diluting aqueous purgeable samples. All steps must be performed without delays until the diluted sample is in a gas-tight syringe.

7.5.4.1.1 Dilutions may be made in volumetric flasks (10 to 100 mL). Select the volumetric flask that will allow for the necessary dilution. Intermediate dilutions may be necessary for extremely large dilutions.
7.5.4.1.2 Calculate the approximate volume of organic-free reagent water to be added to the volumetric flask selected and add slightly less than this quantity of organic-free reagent water to the flask.

7.5.4.1.3 Inject the proper aliquot of sample from the syringe into the flask. Aliquots of less than 1 mL are not recommended. Dilute the sample to the mark with organic-free reagent water. Cap the flask, invert, and shake three times. Repeat above procedure for additional dilutions.

7.5.4.1.4 Fill a 5 mL syringe with the diluted sample.

7.5.4.2 Compositing aqueous samples prior to GC/MS analysis

7.5.4.2.1 Add 5 mL or equal larger amounts of each sample (up to 5 samples are allowed) to a 25 mL glass syringe. Special precautions must be made to maintain zero headspace in the syringe.

7.5.4.2.2 The samples must be cooled at 4°C during this step to minimize volatilization losses.

7.5.4.2.3 Mix well and draw out a 5 mL aliquot for analysis.

7.5.4.2.4 Follow sample introduction, purging, and desorption steps described in Method 5030.

7.5.4.2.5 If less than five samples are used for compositing, a proportionately smaller syringe may be used unless a 25 mL sample is to be purged.

7.5.5 Add 10.0 µL of surrogate spiking solution and 10 µL of internal standard spiking solution to each sample. The surrogate and internal standards may be mixed and added as a single spiking solution. The addition of 10 µL of the surrogate spiking solution to 5 mL of sample is equivalent to a concentration of 50 µg/L of each surrogate standard. The addition of 10 µL of the surrogate spiking solution to 5 g of sample is equivalent to a concentration of 50 µg/kg of each surrogate standard.

7.5.5.1 If a more sensitive mass spectrometer is employed to achieve lower detection levels, more dilute surrogate and internal standard solutions may be required.

7.5.6 Perform purge-and-trap or direct injection by Method 5030. If the initial analysis of sample or a dilution of the sample has a concentration of analytes that exceeds the initial calibration range, the sample must be reanalyzed at a higher dilution. Secondary ion quantitation is allowed only when there are sample interferences with the primary ion. When a sample is analyzed that has saturated ions from a compound, this analysis must be followed by a blank organic-free reagent
water analysis. If the blank analysis is not free of interferences, the system must be decontaminated. Sample analysis may not resume until the blank analysis is demonstrated to be free of interferences.

7.5.6.1 All dilutions should keep the response of the major constituents (previously saturated peaks) in the upper half of the linear range of the curve. Proceed to Secs. 7.6.1 and 7.6.2 for qualitative and quantitative analysis.

7.5.7 For matrix spike analysis, add 10 µL of the matrix spike solution (Sec. 5.13) to the 5 mL of sample to be purged. Disregarding any dilutions, this is equivalent to a concentration of 50 µg/L of each matrix spike standard.

7.6 Data interpretation

7.6.1 Qualitative analysis

7.6.1.1 The qualitative identification of compounds determined by this method is based on retention time, and on comparison of the sample mass spectrum, after background correction, with characteristic ions in a reference mass spectrum. The reference mass spectrum must be generated by the laboratory using the conditions of this method. The characteristic ions from the reference mass spectrum are defined to be the three ions of greatest relative intensity, or any ions over 30% relative intensity if less than three such ions occur in the reference spectrum. Compounds should be identified as present when the criteria below are met.

7.6.1.1.1 The intensities of the characteristic ions of a compound maximize in the same scan or within one scan of each other. Selection of a peak by a data system target compound search routine where the search is based on the presence of a target chromatographic peak containing ions specific for the target compound at a compound-specific retention time will be accepted as meeting this criterion.

7.6.1.1.2 The RRT of the sample component is within ± 0.06 RRT units of the RRT of the standard component.

7.6.1.1.3 The relative intensities of the characteristic ions agree within 30% of the relative intensities of these ions in the reference spectrum. (Example: For an ion with an abundance of 50% in the reference spectrum, the corresponding abundance in a sample spectrum can range between 20% and 80%.)

7.6.1.1.4 Structural isomers that produce very similar mass spectra should be identified as individual isomers if they have sufficiently different GC retention times. Sufficient GC resolution is achieved if the height of the valley between two isomer peaks is less than 25% of the sum of
the two peak heights. Otherwise, structural isomers are identified as isomeric pairs.

7.6.1.1.5 Identification is hampered when sample components are not resolved chromatographically and produce mass spectra containing ions contributed by more than one analyte. When gas chromatographic peaks obviously represent more than one sample component (i.e., a broadened peak with shoulder(s) or a valley between two or more maxima), appropriate selection of analyte spectra and background spectra is important. Examination of extracted ion current profiles of appropriate ions can aid in the selection of spectra, and in qualitative identification of compounds. When analytes coelute (i.e., only one chromatographic peak is apparent), the identification criteria can be met, but each analyte spectrum will contain extraneous ions contributed by the coeluting compound.

7.6.1.2 For samples containing components not associated with the calibration standards, a library search may be made for the purpose of tentative identification. The necessity to perform this type of identification will be determined by the type of analyses being conducted. Guidelines for making tentative identification are:

(1) Relative intensities of major ions in the reference spectrum (ions > 10% of the most abundant ion) should be present in the sample spectrum.

(2) The relative intensities of the major ions should agree within ± 20%. (Example: For an ion with an abundance of 50% in the standard spectrum, the corresponding sample ion abundance must be between 30 and 70%).

(3) Molecular ions present in the reference spectrum should be present in the sample spectrum.

(4) Ions present in the sample spectrum but not in the reference spectrum should be reviewed for possible background contamination or presence of coeluting compounds.

(5) Ions present in the reference spectrum but not in the sample spectrum should be reviewed for possible subtraction from the sample spectrum because of background contamination or coeluting peaks. Data system library reduction programs can sometimes create these discrepancies.

Computer generated library search routines should not use normalization routines that would misrepresent the library or unknown spectra when compared to each other. Only after visual comparison of sample with the nearest library searches will the mass spectral interpretation specialist assign a tentative identification.
7.6.2 Quantitative analysis

7.6.2.1 When a compound has been identified, the quantitation of that compound will be based on the integrated abundance from the EICP of the primary characteristic ion. Quantitation will take place using the internal standard technique. The internal standard used shall be the one nearest the retention time of that of a given analyte.

7.6.2.2 When MS response is linear and passes through the origin, calculate the concentration of each identified analyte in the sample as follows:

Water

\[
\text{concentration (µg/L)} = \frac{(A_x)(I_s)}{(A_{is})(RF)(V_o)}
\]

where:

\(A_x\) = Area of characteristic ion for compound being measured.
\(I_s\) = Amount of internal standard injected (ng).
\(A_{is}\) = Area of characteristic ion for the internal standard.
\(RF\) = Mean relative response factor for compound being measured.
\(V_o\) = Volume of water purged (mL), taking into consideration any dilutions made.

Sediment/Soil Sludge (on a dry-weight basis) and Waste (normally on a wet-weight basis)

\[
\text{concentration (µg/kg)} = \frac{(A_x)(I_s)(V_i)}{(A_{is})(RF)(V_i)(W_s)(D)}
\]

where:

\(A_x, I_s, A_{is}, RF, V_i\) = Same as for water.
\(V_s\) = Volume of total extract (µL) (use 10,000 µL or a factor of this when dilutions are made).
\(V_i\) = Volume of extract added (µL) for purging.
\(W_s\) = Weight of sample extracted or purged (g).
\(D\) = % dry weight of sample/100, or 1 for a wet-weight basis.

7.6.2.3 Where applicable, an estimate of concentration for noncalibrated components in the sample should be made. The formulae given above should be used with the following modifications: The areas \(A_x\) and \(A_{is}\) should be from the total ion chromatograms, and the
RF for the compound should be assumed to be 1. The concentration obtained should be reported indicating (1) that the value is an estimate and (2) which internal standard was used to determine concentration. Use the nearest internal standard free of interferences.

7.6.2.4 Alternatively, the regression line fitted to the initial calibration (Sec. 7.3.6.1) may be used for determination of analyte concentration.

8.0 QUALITY CONTROL

8.1 Refer to Chapter One and Method 8000 for general quality control procedures.

8.2 Additional required instrument QC is found in the Secs. 7.3 and 7.4:
8.2.1 The GC/MS system must be tuned to meet the BFB specifications.
8.2.2 There must be an initial calibration of the GC/MS system
8.2.3 The GC/MS system must meet the SPCC criteria and the CCC criteria, each 12 hours.

8.3 To establish the ability to generate acceptable accuracy and precision, the analyst must perform the following operations.

8.3.1 A quality control (QC) reference sample concentrate is required containing each analyte at a concentration of 10 mg/L or less in methanol. The QC reference sample concentrate may be prepared from pure standard materials or purchased as certified solutions. If prepared by the laboratory, the QC reference sample concentrate must be made using stock standards prepared independently from those used for calibration.

8.3.2 Prepare a QC reference sample to contain 20 µg/L or less of each analyte by adding 200 µL of QC reference sample concentrate to 100 mL of organic-free reagent water.

8.3.3 Four 5-mL aliquots of the well mixed QC reference sample are analyzed according to the method beginning in Sec. 7.5.1.

8.3.4 Calculate the average recovery (x) in µg/L, and the standard deviation of the recovery (s) in µg/L, for each analyte using the four results.

8.3.5 Tables 7 and 8 provide single laboratory recovery and precision data obtained for the method analytes from water. Similar results from dosed water should be expected by any experienced laboratory. Compare s and x (Sec. 8.3.4) for each analyte to the single laboratory recovery and precision data. Results are comparable if the calculated standard deviation of the recovery does not exceed 2.6 times the single
laboratory RSD or 20%, whichever is greater, and the mean recovery lies within the interval $x \pm 3s$ or $x \pm 30\%$, whichever is greater.

NOTE: The large number of analytes in Tables 7 and 8 present a substantial probability that one or more will fail at least one of the acceptance criteria when all analytes of a given method are determined.

8.3.6 When one or more of the analytes tested are not comparable to the data in Table 6 or 7, the analyst must proceed according to Sec. 8.3.6.1 or 8.3.6.2.

8.3.6.1 Locate and correct the source of the problem and repeat the test for all analytes beginning with Sec. 8.3.2.

8.3.6.2 Beginning with Sec. 8.3.2, repeat the test only for those analytes that are not comparable. Repeated failure, however, will confirm a general problem with the measurement system. If this occurs, locate and correct the source of the problem and repeat the test for all compounds of interest beginning with Sec. 8.3.2.

8.4 For aqueous and soil matrices, laboratory established surrogate control limits should be compared with the control limits listed in Table 8.

8.4.1 If recovery is not within limits, the following procedures are required.

8.4.1.1 Check to be sure that there are no errors in the calculations, surrogate solutions or internal standards. If errors are found, recalculate the data accordingly.

8.4.1.2 Check instrument performance. If an instrument performance problem is identified, correct the problem and re-analyze the extract.

8.4.1.3 If no problem is found, re-extract and re-analyze the sample.

8.4.1.4 If, upon re-analysis, the recovery is again not within limits, flag the data as "estimated concentration".

8.4.2 At a minimum, each laboratory should update surrogate recovery limits on a matrix-by-matrix basis, annually.

9.0 METHOD PERFORMANCE
9.1 The method detection limit (MDL) is defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the value is above zero. The MDL actually achieved in a given analysis will vary depending on instrument sensitivity and matrix effects.

9.2 This method has been tested in a single laboratory using spiked water. Using a wide-bore capillary column, water was spiked at concentrations between 0.5 and 10 µg/L. Single laboratory accuracy and precision data are presented for the method analytes in Table 6. Calculated MDLs are presented in Table 1.

9.3 The method was tested using water spiked at 0.1 to 0.5 µg/L and analyzed on a cryofocussed narrow-bore column. The accuracy and precision data for these compounds are presented in Table 7. MDL values were also calculated from these data and are presented in Table 2.

9.4 Direct injection has been used for the analysis of waste motor oil samples using a wide-bore column. The accuracy and precision data for these compounds are presented in Table 10.

10.0 REFERENCES

8. Non Cryogenic Temperatures Program and Chromatogram. Private Communications: Myron Stephenson and Frank Allen. EPA Region IV Laboratory, Athens, GA.

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>RETENTION TIME</th>
<th>MDL<sup>d</sup> (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Column 1<sup>a</sup></td>
<td>Column 2<sup>b</sup></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>1.35</td>
<td>0.70</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>1.49</td>
<td>0.73</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>1.56</td>
<td>0.79</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>2.19</td>
<td>0.96</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>2.21</td>
<td>1.02</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>2.42</td>
<td>1.19</td>
</tr>
<tr>
<td>Acrolein</td>
<td>3.19</td>
<td></td>
</tr>
<tr>
<td>Iodomethane</td>
<td>3.56</td>
<td></td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>4.11</td>
<td></td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>4.11</td>
<td></td>
</tr>
<tr>
<td>Allyl chloride</td>
<td>4.11</td>
<td></td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>4.40</td>
<td>2.06</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>4.57</td>
<td>1.57</td>
</tr>
<tr>
<td>Acetone</td>
<td>4.57</td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>4.57</td>
<td>2.36</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>6.14</td>
<td>2.93</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>6.43</td>
<td></td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>8.10</td>
<td>3.80</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>8.25</td>
<td>3.90</td>
</tr>
<tr>
<td>Propionitrile</td>
<td>8.51</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>9.01</td>
<td>4.80</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>--</td>
<td>4.38</td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td>9.19</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>10.18</td>
<td>4.84</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>11.02</td>
<td>5.26</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>--</td>
<td>5.29</td>
</tr>
<tr>
<td>Benzene</td>
<td>11.50</td>
<td>5.67</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>12.09</td>
<td>5.83</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>14.03</td>
<td>7.27</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>14.51</td>
<td>7.66</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>15.39</td>
<td>8.49</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>15.43</td>
<td>7.93</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td>15.50</td>
<td></td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>16.17</td>
<td></td>
</tr>
<tr>
<td>2-Chloroethyl vinyl ether</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>17.32</td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>17.47</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>18.29</td>
<td>10.00</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>19.38</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>19.59</td>
<td>11.05</td>
</tr>
<tr>
<td>ANALYTE</td>
<td>RETENTION TIME (minutes)</td>
<td>MDL (µg/L)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td>20.01</td>
<td></td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>20.30</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>20.26 11.15 18.60 0.14</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>20.51 11.31 18.70 0.04</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>21.19 11.85 19.20 0.05</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>21.52 11.83 19.40 0.06</td>
<td></td>
</tr>
<tr>
<td>1-Chlorohexane</td>
<td>-- 13.29 -- 0.05</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>23.17 13.01 20.67 0.04</td>
<td></td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>23.36 13.33 20.87 0.05</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>23.38 13.39 21.00 0.06</td>
<td></td>
</tr>
<tr>
<td>p-Xylene</td>
<td>23.54 13.69 21.30 0.13</td>
<td></td>
</tr>
<tr>
<td>m-Xylene</td>
<td>23.54 13.68 21.37 0.05</td>
<td></td>
</tr>
<tr>
<td>o-Xylene</td>
<td>25.16 14.52 22.27 0.11</td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>25.30 14.60 22.40 0.04</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td>26.23 14.88 22.77 0.12</td>
<td></td>
</tr>
<tr>
<td>Isopropylbenzene (Cumene)</td>
<td>26.37 15.46 23.30 0.15</td>
<td></td>
</tr>
<tr>
<td>cis-1,4-Dichloro-2-butene</td>
<td>27.12</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>27.29 16.35 24.07 0.04</td>
<td></td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>27.46 15.86 24.00 0.03</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichloropropene</td>
<td>27.55 16.23 24.13 0.32</td>
<td></td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>27.58 16.41 24.33 0.04</td>
<td></td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>28.19 16.42 24.53 0.04</td>
<td></td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td>28.26</td>
<td></td>
</tr>
<tr>
<td>1,3,5-Trichlorobenzene</td>
<td>28.31 16.90 24.83 0.05</td>
<td></td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>28.33 16.72 24.77 0.06</td>
<td></td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td>29.41</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>29.47 17.70 31.50 0.13</td>
<td></td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>30.25 18.09 26.13 0.13</td>
<td></td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>30.59 17.57 26.60 0.14</td>
<td></td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>30.59 18.52 26.50 0.12</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>30.56 18.14 26.37 0.12</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>31.22 18.39 26.60 0.03</td>
<td></td>
</tr>
<tr>
<td>Benzyl chloride</td>
<td>32.00</td>
<td></td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>32.23 19.49 27.32 0.11</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>32.31 19.17 27.43 0.03</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>35.30 21.08 -- 0.26</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>38.19 23.08 31.50 0.04</td>
<td></td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>38.57 23.68 32.07 0.11</td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>39.05 23.52 32.20 0.04</td>
<td></td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>40.01 24.18 32.97 0.03</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1. (Continued)

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>RETENTION TIME (minutes)</th>
<th>MDL (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Column 1<sup>a</sup></td>
<td>Column 2<sup>b</sup></td>
</tr>
<tr>
<td>INTERNAL STANDARDS/SURROGATES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,4-Difluorobenzene</td>
<td>13.26</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene-<sub>d<sub>5</sub></td>
<td>23.10</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene-<sub>d<sub>4</sub></td>
<td>31.16</td>
<td></td>
</tr>
<tr>
<td>4-Bromofluorobenzene</td>
<td>27.83</td>
<td>15.71</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene-<sub>d<sub>4</sub></td>
<td>32.30</td>
<td>19.08</td>
</tr>
<tr>
<td>Dichloroethane-<sub>d<sub>4</sub></td>
<td>12.08</td>
<td></td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Toluene-<sub>d<sub>8</sub></td>
<td>18.27</td>
<td></td>
</tr>
<tr>
<td>Pentafluorobenzene</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Fluorobenzene</td>
<td>13.00</td>
<td>6.27</td>
</tr>
</tbody>
</table>

^a Column 1 - 60 meter x 0.75 mm ID VOCOL capillary. Hold at 10 °C for 8 minutes, then program to 180°C at 4°/min.

^b Column 2 - 30 meter x 0.53 mm ID DB-624 wide-bore capillary using cryogenic oven. Hold at 10°C for 5 minutes, then program to 160°C at 6°/min.

^c Column 2' - 30 meter x 0.53 mm ID DB-624 wide-bore capillary, cooling GC oven to ambient temperatures. Hold at 10°C for 6 minutes, program to 70°C at 10°/min, program to 120°C at 5°/min, then program to 180°C at 8°/min.

^d MDL based on a 25 mL sample volume.
<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>RETENTION TIME (minutes)</th>
<th>MDL (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichlorodifluoromethane</td>
<td>0.88</td>
<td>0.11</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.97</td>
<td>0.05</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>1.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>1.29</td>
<td>0.06</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>1.45</td>
<td>0.02</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>1.77</td>
<td>0.07</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>2.33</td>
<td>0.05</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>2.66</td>
<td>0.09</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>3.54</td>
<td>0.03</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>4.03</td>
<td>0.03</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>5.07</td>
<td>0.06</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>5.31</td>
<td>0.08</td>
</tr>
<tr>
<td>Chloroform</td>
<td>5.55</td>
<td>0.04</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>5.63</td>
<td>0.09</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>6.76</td>
<td>0.04</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>7.00</td>
<td>0.02</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>7.16</td>
<td>0.12</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>7.41</td>
<td>0.02</td>
</tr>
<tr>
<td>Benzene</td>
<td>7.41</td>
<td>0.03</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>8.94</td>
<td>0.02</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>9.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>9.09</td>
<td>0.01</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>9.34</td>
<td>0.03</td>
</tr>
<tr>
<td>Toluene</td>
<td>11.51</td>
<td>0.08</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>11.99</td>
<td>0.08</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>12.48</td>
<td>0.08</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>12.80</td>
<td>0.07</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>13.20</td>
<td>0.05</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>13.60</td>
<td>0.10</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>14.33</td>
<td>0.03</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>14.73</td>
<td>0.07</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>14.73</td>
<td>0.03</td>
</tr>
<tr>
<td>p-Xylene</td>
<td>15.30</td>
<td>0.06</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>15.30</td>
<td>0.03</td>
</tr>
<tr>
<td>Bromoform</td>
<td>15.70</td>
<td>0.20</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>15.78</td>
<td>0.06</td>
</tr>
<tr>
<td>Styrene</td>
<td>15.78</td>
<td>0.27</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>15.78</td>
<td>0.20</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>16.26</td>
<td>0.09</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>16.42</td>
<td>0.10</td>
</tr>
<tr>
<td>ANALYTE</td>
<td>RETENTION TIME (minutes)</td>
<td>MDL<sup>b</sup> (µg/L)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>16.42</td>
<td>0.11</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>16.74</td>
<td>0.08</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>16.82</td>
<td>0.10</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>16.82</td>
<td>0.06</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>16.99</td>
<td>0.06</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>17.31</td>
<td>0.33</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>17.31</td>
<td>0.09</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>17.47</td>
<td>0.12</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>17.47</td>
<td>0.05</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>17.63</td>
<td>0.26</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>17.63</td>
<td>0.04</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>17.79</td>
<td>0.05</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>17.95</td>
<td>0.10</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>18.03</td>
<td>0.50</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>18.84</td>
<td>0.20</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>19.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>19.24</td>
<td>0.10</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>19.24</td>
<td>0.14</td>
</tr>
</tbody>
</table>

^a Column 3 - 30 meter x 0.32 mm ID DB-5 capillary with 1 µm film thickness.

^b MDL based on a 25 mL sample volume.
Estimated Quantitation Limits for Volatile Analytes

Table 3.

<table>
<thead>
<tr>
<th>Estimated Quantitation Limits (All Analytes in Table 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground water</td>
</tr>
<tr>
<td>Purging 5 mL of water</td>
</tr>
<tr>
<td>Purging 25 mL of water</td>
</tr>
<tr>
<td>Soil/Sediment</td>
</tr>
</tbody>
</table>

- **Estimated Quantitation Limit (EQL)** - The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. The EQL is generally 5 to 10 times the MDL. However, it may be nominally chosen within these guidelines to simplify data reporting. For many analytes the EQL is selected from the lowest non-zero standard in the calibration curve. Sample EQLs are highly matrix-dependent. The EQLs listed herein are provided for guidance and may not always be achievable.

- **EQLs listed for soil/sediment** are based on wet weight. Normally data are reported on a dry weight basis; therefore, EQLs will be higher, based on the percent dry weight in each sample.

<table>
<thead>
<tr>
<th>Other Matrices</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water miscible liquid waste</td>
<td>50</td>
</tr>
<tr>
<td>High-concentration soil and sludge</td>
<td>125</td>
</tr>
<tr>
<td>Non-water miscible waste</td>
<td>500</td>
</tr>
</tbody>
</table>

\[\text{EQL} = \left[\text{EQL for low soil/sediment (see Table 3)}\right] \times [\text{Factor}]. \text{ For non-aqueous samples, the factor is on a wet-weight basis.}\]
TABLE 4.
BFB MASS - INTENSITY SPECIFICATIONS (4-BROMOFUOROBENZENE)*

<table>
<thead>
<tr>
<th>Mass</th>
<th>Intensity Required (relative abundance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>15 to 40% of mass 95</td>
</tr>
<tr>
<td>75</td>
<td>30 to 60% of mass 95</td>
</tr>
<tr>
<td>95</td>
<td>base peak, 100% relative abundance</td>
</tr>
<tr>
<td>96</td>
<td>5 to 9% of mass 95</td>
</tr>
<tr>
<td>173</td>
<td>less than 2% of mass 174</td>
</tr>
<tr>
<td>174</td>
<td>greater than 50% of mass 95</td>
</tr>
<tr>
<td>175</td>
<td>5 to 9% of mass 174</td>
</tr>
<tr>
<td>176</td>
<td>greater than 95% but less than 101% of mass 174</td>
</tr>
<tr>
<td>177</td>
<td>5 to 9% of mass 176</td>
</tr>
</tbody>
</table>

* Alternate tuning criteria may be used (e.g. CLP, Method 524.2, or manufacturers' instructions), provided that method performance is not adversely affected.
TABLE 5.
CHARACTERISTIC MASSES (M/Z) FOR PURGEABLE ORGANIC COMPOUNDS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Primary Characteristic Ion</th>
<th>Secondary Characteristic Ion(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>58</td>
<td>43</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>41</td>
<td>41, 40, 39</td>
</tr>
<tr>
<td>Acrolein</td>
<td>56</td>
<td>55, 58</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>53</td>
<td>52, 51</td>
</tr>
<tr>
<td>Allyl alcohol</td>
<td>57</td>
<td>57, 58, 39</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td>76</td>
<td>76, 41, 39, 78</td>
</tr>
<tr>
<td>Benzene</td>
<td>78</td>
<td>-</td>
</tr>
<tr>
<td>Benzyl chloride</td>
<td>91</td>
<td>91, 126, 65, 128</td>
</tr>
<tr>
<td>Bromoacetone</td>
<td>136</td>
<td>43, 136, 138, 93, 95</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>156</td>
<td>77, 158</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>128</td>
<td>49, 130</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>83</td>
<td>85, 127</td>
</tr>
<tr>
<td>Bromoform</td>
<td>173</td>
<td>175, 254</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>94</td>
<td>96</td>
</tr>
<tr>
<td>iso-Butanol</td>
<td>74</td>
<td>43</td>
</tr>
<tr>
<td>n-Butanol</td>
<td>56</td>
<td>41</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>72</td>
<td>43, 72</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>91</td>
<td>92, 134</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>105</td>
<td>134</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>119</td>
<td>91, 134</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>117</td>
<td>119</td>
</tr>
<tr>
<td>Chloral hydrate</td>
<td>82</td>
<td>44, 84, 86, 111</td>
</tr>
<tr>
<td>Chloroacetonitrile</td>
<td>48</td>
<td>75</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>112</td>
<td>77, 114</td>
</tr>
<tr>
<td>1-Chlorobutane</td>
<td>56</td>
<td>49</td>
</tr>
<tr>
<td>Chlorodibromomethane</td>
<td>129</td>
<td>208, 206</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>64(49*)</td>
<td>66(51*)</td>
</tr>
<tr>
<td>2-Chloroethanol</td>
<td>49</td>
<td>49, 44, 43, 51, 80</td>
</tr>
<tr>
<td>bis-(2-chloroethyl) sulfide</td>
<td>109</td>
<td>111, 158, 160</td>
</tr>
<tr>
<td>2-Chloroethyl vinyl ether</td>
<td>63</td>
<td>65, 106</td>
</tr>
<tr>
<td>Chloroform</td>
<td>83</td>
<td>85</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>50(49*)</td>
<td>52(51*)</td>
</tr>
<tr>
<td>Chloroprene</td>
<td>53</td>
<td>53, 88, 90, 51</td>
</tr>
<tr>
<td>3-Chloropropionitrile</td>
<td>54</td>
<td>54, 49, 89, 91</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>91</td>
<td>126</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>91</td>
<td>126</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>75</td>
<td>155, 157</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>129</td>
<td>127</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>107</td>
<td>109, 188</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>93</td>
<td>95, 174</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>146</td>
<td>111, 148</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene-d₄</td>
<td>152</td>
<td>115, 150</td>
</tr>
<tr>
<td>Analyte</td>
<td>Primary Characteristic Ion</td>
<td>Secondary Characteristic Ion(s)</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>146</td>
<td>111, 148</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>146</td>
<td>111, 148</td>
</tr>
<tr>
<td>cis-1,4-Dichloro-2-butene</td>
<td>75</td>
<td>75, 53, 77, 124, 89</td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td>53</td>
<td>88, 75</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>85</td>
<td>87</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>63</td>
<td>65, 83</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>62</td>
<td>98</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>96</td>
<td>61, 63</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>96</td>
<td>61, 98</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>96</td>
<td>61, 98</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>63</td>
<td>112</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>77</td>
<td>97</td>
</tr>
<tr>
<td>1,3-Dichloro-2-propanol</td>
<td>79</td>
<td>79, 43, 81, 49</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>75</td>
<td>110, 77</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>75</td>
<td>77, 39</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>75</td>
<td>77, 39</td>
</tr>
<tr>
<td>1,2,3,4-Diepoxybutane</td>
<td>55</td>
<td>55, 57, 56</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>74</td>
<td>45, 59</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>88</td>
<td>88, 58, 43, 57</td>
</tr>
<tr>
<td>Epichlorohydrin</td>
<td>57</td>
<td>57, 49, 62, 51</td>
</tr>
<tr>
<td>Ethanol</td>
<td>31</td>
<td>45, 27, 46</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>88</td>
<td>43, 45, 61</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>91</td>
<td>106</td>
</tr>
<tr>
<td>Ethylene oxide</td>
<td>44</td>
<td>44, 43, 42</td>
</tr>
<tr>
<td>Ethyl methacrylate</td>
<td>69</td>
<td>69, 41, 99, 86, 114</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>225</td>
<td>223, 227</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>201</td>
<td>166, 199, 203</td>
</tr>
<tr>
<td>2-Hexanone</td>
<td>43</td>
<td>58, 57, 100</td>
</tr>
<tr>
<td>2-Hydroxypropionitrile</td>
<td>44</td>
<td>44, 43, 42, 53</td>
</tr>
<tr>
<td>Iodomethane</td>
<td>142</td>
<td>127, 141</td>
</tr>
<tr>
<td>Isobutyl alcohol</td>
<td>43</td>
<td>43, 41, 42, 74</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>105</td>
<td>120</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>119</td>
<td>134, 91</td>
</tr>
<tr>
<td>Malononitrile</td>
<td>66</td>
<td>66, 39, 65, 38</td>
</tr>
<tr>
<td>Methacrylonitrile</td>
<td>41</td>
<td>41, 67, 39, 52, 66</td>
</tr>
<tr>
<td>Methyl acrylate</td>
<td>55</td>
<td>85</td>
</tr>
<tr>
<td>Methyl t-butyl ether</td>
<td>73</td>
<td>57</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>84</td>
<td>86, 49</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>72</td>
<td>43</td>
</tr>
<tr>
<td>Methyl iodide</td>
<td>142</td>
<td>142, 127, 141</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td>69</td>
<td>69, 41, 100, 39</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>100</td>
<td>43, 58, 85</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>128</td>
<td>-</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>123</td>
<td>51, 77</td>
</tr>
</tbody>
</table>
TABLE 5. (continued)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Primary Characteristic Ion</th>
<th>Secondary Characteristic Ion(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Nitropropane</td>
<td>46</td>
<td>-</td>
</tr>
<tr>
<td>2-Picoline</td>
<td>93</td>
<td>93, 66, 92, 78</td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td>167</td>
<td>167, 130, 132, 165, 169</td>
</tr>
<tr>
<td>Propargyl alcohol</td>
<td>55</td>
<td>55, 39, 38, 53</td>
</tr>
<tr>
<td>n-Propiolactone</td>
<td>42</td>
<td>42, 43, 44</td>
</tr>
<tr>
<td>Propionitrile (ethyl cyanide)</td>
<td>54</td>
<td>54, 52, 55, 40</td>
</tr>
<tr>
<td>n-Propylamine</td>
<td>59</td>
<td>59, 41, 39</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>91</td>
<td>120</td>
</tr>
<tr>
<td>Pyridine</td>
<td>79</td>
<td>52</td>
</tr>
<tr>
<td>Styrene</td>
<td>104</td>
<td>78</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>180</td>
<td>182, 145</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>180</td>
<td>182, 145</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>131</td>
<td>133, 119</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>83</td>
<td>131, 85</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>164</td>
<td>129, 131, 166</td>
</tr>
<tr>
<td>Toluene</td>
<td>92</td>
<td>91</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>97</td>
<td>99, 61</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>83</td>
<td>97, 85</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>95</td>
<td>97, 130, 132</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>151</td>
<td>101, 153</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>75</td>
<td>77</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>105</td>
<td>120</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>105</td>
<td>120</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>43</td>
<td>86</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>62</td>
<td>64</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>106</td>
<td>91</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>106</td>
<td>91</td>
</tr>
<tr>
<td>p-Xylene</td>
<td>106</td>
<td>91</td>
</tr>
</tbody>
</table>

INTERNAL STANDARDS/SURROGATES

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Difluorobenzene</td>
<td>114</td>
</tr>
<tr>
<td>Chlorobenzene-d$_s$</td>
<td>117</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene-d$_d$</td>
<td>152</td>
</tr>
<tr>
<td>4-Bromofluorobenzene</td>
<td>95</td>
</tr>
<tr>
<td>Dibromofluoromethane</td>
<td>113</td>
</tr>
<tr>
<td>Dichloroethane-d$_d$</td>
<td>102</td>
</tr>
<tr>
<td>Toluene-d$_d$</td>
<td>98</td>
</tr>
<tr>
<td>Pentafluorobenzene</td>
<td>168</td>
</tr>
<tr>
<td>Fluorobenzene</td>
<td>96</td>
</tr>
</tbody>
</table>

* - characteristic ion for an ion trap mass spectrometer (to be used when ion-molecule reactions are observed)
TABLE 6.
SINGLE LABORATORY ACCURACY AND PRECISION DATA FOR VOLATILE ORGANIC COMPOUNDS IN WATER DETERMINED WITH A WIDE-BORE CAPILLARY COLUMN

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. Range, µg/L</th>
<th>Number of Samples</th>
<th>Recoverya %</th>
<th>Standard Deviation of Recoveryb %</th>
<th>Percent RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>0.1 - 10</td>
<td>31</td>
<td>97</td>
<td>6.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>0.1 - 10</td>
<td>30</td>
<td>100</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>0.5 - 10</td>
<td>24</td>
<td>90</td>
<td>5.7</td>
<td>6.4</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>0.1 - 10</td>
<td>30</td>
<td>95</td>
<td>5.7</td>
<td>6.1</td>
</tr>
<tr>
<td>Bromoform</td>
<td>0.5 - 10</td>
<td>18</td>
<td>101</td>
<td>6.4</td>
<td>6.3</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>0.5 - 10</td>
<td>18</td>
<td>95</td>
<td>7.8</td>
<td>8.2</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>0.5 - 10</td>
<td>18</td>
<td>100</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>0.5 - 10</td>
<td>16</td>
<td>100</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>0.5 - 10</td>
<td>18</td>
<td>102</td>
<td>7.4</td>
<td>7.3</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>0.5 - 10</td>
<td>24</td>
<td>84</td>
<td>7.4</td>
<td>8.8</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>0.1 - 10</td>
<td>31</td>
<td>98</td>
<td>5.8</td>
<td>5.9</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>0.5 - 10</td>
<td>24</td>
<td>89</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.5 - 10</td>
<td>24</td>
<td>90</td>
<td>5.5</td>
<td>6.1</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.5 - 10</td>
<td>23</td>
<td>93</td>
<td>8.3</td>
<td>8.9</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>0.1 - 10</td>
<td>31</td>
<td>90</td>
<td>5.6</td>
<td>6.2</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>0.1 - 10</td>
<td>31</td>
<td>99</td>
<td>8.2</td>
<td>8.3</td>
</tr>
<tr>
<td>1,2-Dibromo-3-Chloropropane</td>
<td>0.5 - 10</td>
<td>24</td>
<td>83</td>
<td>16.6</td>
<td>19.9</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>0.1 - 10</td>
<td>31</td>
<td>92</td>
<td>6.5</td>
<td>7.0</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>0.5 - 10</td>
<td>24</td>
<td>102</td>
<td>4.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>0.5 - 10</td>
<td>24</td>
<td>100</td>
<td>5.6</td>
<td>5.6</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>0.1 - 10</td>
<td>31</td>
<td>93</td>
<td>5.8</td>
<td>6.2</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>0.5 - 10</td>
<td>24</td>
<td>99</td>
<td>6.8</td>
<td>6.9</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>0.2 - 20</td>
<td>31</td>
<td>103</td>
<td>6.6</td>
<td>6.4</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>0.5 - 10</td>
<td>18</td>
<td>90</td>
<td>6.9</td>
<td>7.7</td>
</tr>
<tr>
<td>1,1-Dichlorobenzene</td>
<td>0.5 - 10</td>
<td>24</td>
<td>96</td>
<td>5.1</td>
<td>5.3</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>0.1 - 10</td>
<td>31</td>
<td>95</td>
<td>5.1</td>
<td>5.4</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.1 - 10</td>
<td>34</td>
<td>94</td>
<td>6.3</td>
<td>6.7</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>0.5 - 10</td>
<td>18</td>
<td>101</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>0.1 - 10</td>
<td>30</td>
<td>93</td>
<td>5.2</td>
<td>5.6</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>0.1 - 10</td>
<td>30</td>
<td>97</td>
<td>5.9</td>
<td>6.1</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>0.1 - 10</td>
<td>31</td>
<td>96</td>
<td>5.7</td>
<td>6.0</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>0.5 - 10</td>
<td>12</td>
<td>86</td>
<td>14.6</td>
<td>16.9</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>0.5 - 10</td>
<td>18</td>
<td>98</td>
<td>8.7</td>
<td>8.9</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.1 - 10</td>
<td>31</td>
<td>99</td>
<td>8.4</td>
<td>8.6</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>0.5 - 10</td>
<td>18</td>
<td>100</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>0.5 - 10</td>
<td>16</td>
<td>101</td>
<td>7.7</td>
<td>7.6</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>0.1 - 10</td>
<td>23</td>
<td>99</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>0.1 - 10</td>
<td>30</td>
<td>95</td>
<td>5.0</td>
<td>5.3</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.1 - 100</td>
<td>31</td>
<td>104</td>
<td>8.6</td>
<td>8.2</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>0.1 - 10</td>
<td>31</td>
<td>100</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Styrene</td>
<td>0.1 - 100</td>
<td>39</td>
<td>102</td>
<td>7.3</td>
<td>7.2</td>
</tr>
</tbody>
</table>
TABLE 6.
(Continued)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. Range, µg/L</th>
<th>Number of Samples</th>
<th>Recovery%</th>
<th>Standard Deviation of Recovery</th>
<th>Percent RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>0.5 - 10</td>
<td>24</td>
<td>90</td>
<td>6.1</td>
<td>6.8</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.1 - 10</td>
<td>30</td>
<td>91</td>
<td>5.7</td>
<td>6.3</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.5 - 10</td>
<td>24</td>
<td>89</td>
<td>6.0</td>
<td>6.8</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.5 - 10</td>
<td>18</td>
<td>102</td>
<td>8.1</td>
<td>8.0</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>0.5 - 10</td>
<td>18</td>
<td>109</td>
<td>9.4</td>
<td>8.6</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>0.5 - 10</td>
<td>18</td>
<td>108</td>
<td>9.0</td>
<td>8.3</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>0.5 - 10</td>
<td>18</td>
<td>98</td>
<td>7.9</td>
<td>8.1</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>0.5 - 10</td>
<td>18</td>
<td>104</td>
<td>7.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>0.5 - 10</td>
<td>24</td>
<td>90</td>
<td>6.5</td>
<td>7.3</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>0.5 - 10</td>
<td>24</td>
<td>89</td>
<td>7.2</td>
<td>8.1</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>0.5 - 10</td>
<td>16</td>
<td>108</td>
<td>15.6</td>
<td>14.4</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>0.5 - 10</td>
<td>18</td>
<td>99</td>
<td>8.0</td>
<td>8.1</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>0.5 - 10</td>
<td>23</td>
<td>92</td>
<td>6.8</td>
<td>7.4</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.5 - 10</td>
<td>18</td>
<td>98</td>
<td>6.5</td>
<td>6.7</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>0.1 - 31</td>
<td>18</td>
<td>103</td>
<td>7.4</td>
<td>7.2</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>0.1 - 10</td>
<td>31</td>
<td>97</td>
<td>6.3</td>
<td>6.5</td>
</tr>
<tr>
<td>p-Xylene</td>
<td>0.5 - 10</td>
<td>18</td>
<td>104</td>
<td>8.0</td>
<td>7.7</td>
</tr>
</tbody>
</table>

a Recoveries were calculated using internal standard method. Internal standard was fluorobenzene.

b Standard deviation was calculated by pooling data from three concentrations.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Conc. µg/L</th>
<th>Number of Samples</th>
<th>Recovery %</th>
<th>Standard Deviation of Recovery</th>
<th>Percent RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>0.1</td>
<td>7</td>
<td>99</td>
<td>6.2</td>
<td>6.3</td>
</tr>
<tr>
<td>Bromobenzene</td>
<td>0.5</td>
<td>7</td>
<td>97</td>
<td>7.4</td>
<td>7.6</td>
</tr>
<tr>
<td>Bromochloromethane</td>
<td>0.5</td>
<td>7</td>
<td>97</td>
<td>5.8</td>
<td>6.0</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>0.1</td>
<td>7</td>
<td>100</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Bromoform</td>
<td>0.5</td>
<td>7</td>
<td>101</td>
<td>5.4</td>
<td>5.3</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>0.5</td>
<td>7</td>
<td>99</td>
<td>7.1</td>
<td>7.2</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>0.5</td>
<td>7</td>
<td>94</td>
<td>6.0</td>
<td>6.4</td>
</tr>
<tr>
<td>sec-Butylbenzene</td>
<td>0.5</td>
<td>7</td>
<td>110</td>
<td>7.1</td>
<td>6.5</td>
</tr>
<tr>
<td>tert-Butylbenzene</td>
<td>0.5</td>
<td>7</td>
<td>110</td>
<td>2.5</td>
<td>2.3</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>0.1</td>
<td>7</td>
<td>108</td>
<td>6.8</td>
<td>6.3</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>0.1</td>
<td>7</td>
<td>91</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>0.1</td>
<td>7</td>
<td>100</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.1</td>
<td>7</td>
<td>105</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.5</td>
<td>7</td>
<td>101</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>2-Chlorotoluene</td>
<td>0.5</td>
<td>7</td>
<td>99</td>
<td>7.0</td>
<td>7.3</td>
</tr>
<tr>
<td>4-Chlorotoluene</td>
<td>0.5</td>
<td>7</td>
<td>96</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>0.5</td>
<td>7</td>
<td>92</td>
<td>10.0</td>
<td>10.9</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>0.1</td>
<td>7</td>
<td>99</td>
<td>5.6</td>
<td>5.7</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>0.5</td>
<td>7</td>
<td>97</td>
<td>5.6</td>
<td>5.8</td>
</tr>
<tr>
<td>Dibromomethane</td>
<td>0.5</td>
<td>7</td>
<td>93</td>
<td>5.6</td>
<td>6.0</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>0.1</td>
<td>7</td>
<td>97</td>
<td>3.5</td>
<td>3.6</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>0.1</td>
<td>7</td>
<td>101</td>
<td>6.0</td>
<td>5.9</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>0.1</td>
<td>7</td>
<td>106</td>
<td>6.5</td>
<td>6.1</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>0.1</td>
<td>7</td>
<td>99</td>
<td>8.8</td>
<td>8.9</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>0.5</td>
<td>7</td>
<td>98</td>
<td>6.2</td>
<td>6.3</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>0.1</td>
<td>7</td>
<td>100</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>0.1</td>
<td>7</td>
<td>95</td>
<td>9.0</td>
<td>9.5</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>0.1</td>
<td>7</td>
<td>100</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>0.1</td>
<td>7</td>
<td>98</td>
<td>7.2</td>
<td>7.3</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>0.5</td>
<td>7</td>
<td>96</td>
<td>6.0</td>
<td>6.3</td>
</tr>
<tr>
<td>1,3-Dichloropropane</td>
<td>0.5</td>
<td>7</td>
<td>99</td>
<td>5.8</td>
<td>5.9</td>
</tr>
<tr>
<td>2,2-Dichloropropane</td>
<td>0.5</td>
<td>7</td>
<td>99</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>1,1-Dichloropropene</td>
<td>0.5</td>
<td>7</td>
<td>102</td>
<td>7.4</td>
<td>7.3</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.5</td>
<td>7</td>
<td>99</td>
<td>5.2</td>
<td>5.3</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>0.5</td>
<td>7</td>
<td>100</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>0.5</td>
<td>7</td>
<td>102</td>
<td>6.4</td>
<td>6.3</td>
</tr>
<tr>
<td>p-Isopropyltoluene</td>
<td>0.5</td>
<td>7</td>
<td>113</td>
<td>13.0</td>
<td>11.5</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>0.5</td>
<td>7</td>
<td>97</td>
<td>13.0</td>
<td>13.4</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.5</td>
<td>7</td>
<td>98</td>
<td>7.2</td>
<td>7.3</td>
</tr>
<tr>
<td>n-Propylbenzene</td>
<td>0.5</td>
<td>7</td>
<td>99</td>
<td>6.6</td>
<td>6.7</td>
</tr>
<tr>
<td>Analyte</td>
<td>Conc. µg/L</td>
<td>Number of Samples</td>
<td>Recovery %</td>
<td>Standard Deviation of Recovery</td>
<td>Percent RSD</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Styrene</td>
<td>0.5</td>
<td>7</td>
<td>96</td>
<td>19.0</td>
<td>19.8</td>
</tr>
<tr>
<td>1,1,1,2-Tetrachloroethane</td>
<td>0.5</td>
<td>7</td>
<td>100</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.5</td>
<td>7</td>
<td>100</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>0.1</td>
<td>7</td>
<td>96</td>
<td>5.0</td>
<td>5.2</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.5</td>
<td>7</td>
<td>100</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>1,2,3-Trichlorobenzene</td>
<td>0.5</td>
<td>7</td>
<td>102</td>
<td>8.9</td>
<td>8.7</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>0.5</td>
<td>7</td>
<td>91</td>
<td>16.0</td>
<td>17.6</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>0.5</td>
<td>7</td>
<td>100</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>0.5</td>
<td>7</td>
<td>102</td>
<td>4.9</td>
<td>4.8</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>0.1</td>
<td>7</td>
<td>104</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>0.1</td>
<td>7</td>
<td>97</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>0.5</td>
<td>7</td>
<td>96</td>
<td>6.5</td>
<td>6.8</td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzene</td>
<td>0.5</td>
<td>7</td>
<td>96</td>
<td>6.5</td>
<td>6.8</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene</td>
<td>0.5</td>
<td>7</td>
<td>101</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>0.1</td>
<td>7</td>
<td>104</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>0.5</td>
<td>7</td>
<td>106</td>
<td>7.5</td>
<td>7.1</td>
</tr>
<tr>
<td>m-Xylene</td>
<td>0.5</td>
<td>7</td>
<td>106</td>
<td>4.6</td>
<td>4.3</td>
</tr>
<tr>
<td>p-Xylene</td>
<td>0.5</td>
<td>7</td>
<td>97</td>
<td>6.1</td>
<td>6.3</td>
</tr>
</tbody>
</table>

* Recoveries were calculated using internal standard method. Internal standard was fluorobenzene.
TABLE 8.
SURROGATE SPIKE RECOVERY LIMITS FOR WATER AND SOIL/SEDIMENT SAMPLES

<table>
<thead>
<tr>
<th>Surrogate Compound</th>
<th>Percent Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low/High</td>
</tr>
<tr>
<td></td>
<td>Water</td>
</tr>
<tr>
<td>4-Bromofluorobenzene(^a)</td>
<td>86-115</td>
</tr>
<tr>
<td>Dibromofluoromethane(^a)</td>
<td>86-118</td>
</tr>
<tr>
<td>Toluene-d(_8)(^a)</td>
<td>88-110</td>
</tr>
<tr>
<td>Dichloroethane-d(_4)(^a)</td>
<td>80-120</td>
</tr>
</tbody>
</table>

\(^a\) Single laboratory data, for guidance only.

TABLE 9.
QUANTITY OF EXTRACT REQUIRED FOR ANALYSIS OF HIGH-CONCENTRATION SAMPLES

<table>
<thead>
<tr>
<th>Approximate Concentration Range</th>
<th>Volume of Extract(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 - 10,000 µg/kg</td>
<td>100 µL</td>
</tr>
<tr>
<td>1,000 - 20,000 µg/kg</td>
<td>50 µL</td>
</tr>
<tr>
<td>5,000 - 100,000 µg/kg</td>
<td>10 µL</td>
</tr>
<tr>
<td>25,000 - 500,000 µg/kg</td>
<td>100 µL of 1/50 dilution(^b)</td>
</tr>
</tbody>
</table>

Calculate appropriate dilution factor for concentrations exceeding this table.

\(^a\) The volume of solvent added to 5 mL of water being purged should be kept constant. Therefore, add to the 5 mL syringe whatever volume of solvent is necessary to maintain a volume of 100 µL added to the syringe.

\(^b\) Dilute an aliquot of the solvent extract and then take 100 µL for analysis.
TABLE 10
DIRECT INJECTION ANALYSIS OF NEW OIL AT 5 PPM

<table>
<thead>
<tr>
<th>Compound</th>
<th>Recovery (%)</th>
<th>%RSD</th>
<th>Blank (ppm)</th>
<th>Spike (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>91</td>
<td>14.8</td>
<td>1.9</td>
<td>5.0</td>
</tr>
<tr>
<td>Benzene</td>
<td>86</td>
<td>21.3</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>n-Butanol*,**</td>
<td>107</td>
<td>27.8</td>
<td>0.5</td>
<td>5.0</td>
</tr>
<tr>
<td>iso-Butanol*,**</td>
<td>95</td>
<td>19.5</td>
<td>0.9</td>
<td>5.0</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>86</td>
<td>44.7</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Carbon disulfide**</td>
<td>53</td>
<td>22.3</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>81</td>
<td>29.3</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Chloroform</td>
<td>84</td>
<td>29.3</td>
<td>0.0</td>
<td>6.0</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>98</td>
<td>24.9</td>
<td>0.0</td>
<td>7.5</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>101</td>
<td>23.1</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>97</td>
<td>45.3</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>76</td>
<td>24.3</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>113</td>
<td>27.4</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>83</td>
<td>30.1</td>
<td>0.2</td>
<td>5.0</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>71</td>
<td>30.3</td>
<td>0.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>98</td>
<td>45.3</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Methyl ethyl ketone</td>
<td>79</td>
<td>24.6</td>
<td>0.4</td>
<td>5.0</td>
</tr>
<tr>
<td>MIBK</td>
<td>93</td>
<td>31.4</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>89</td>
<td>30.3</td>
<td>0.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Pyridine</td>
<td>31</td>
<td>35.9</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>82</td>
<td>27.1</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>76</td>
<td>27.6</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>1,1,2-Cl₃F₃ethane</td>
<td>69</td>
<td>29.2</td>
<td>0.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Toluene</td>
<td>73</td>
<td>21.9</td>
<td>0.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>66</td>
<td>28.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>63</td>
<td>35.2</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>o-Xylene</td>
<td>83</td>
<td>29.5</td>
<td>0.4</td>
<td>5.0</td>
</tr>
<tr>
<td>m/p-Xylene</td>
<td>84</td>
<td>29.5</td>
<td>0.6</td>
<td>10.0</td>
</tr>
</tbody>
</table>

* Alternate mass employed
** IS quantitation
Data are taken from Reference 9.
FIGURE 2.
TRAP PACKING AND CONSTRUCTION TO INCLUDE DESORB CAPABILITY
FIGURE 3.
SCHEMATIC OF PURGE-AND-TRAP DEVICE - PURGE MODE

NOTE:
ALL LINES BETWEEN TRAP AND GC SHOULD BE HEATED TO 80°C.
FIGURE 5.
GAS CHROMATOGRAM OF VOLATILE ORGANICS

COLUMN: 60 METER X 0.75 MM I.D. VOCOL CAPILLARY
PROGRAM: 10 C FOR 5 MIN., THEN 6 /MIN TO 160 C
FIGURE 6.
GAS CHROMATOGRAM OF VOLATILE ORGANICS

Column 2 - 30m long x 0.53mm ID 08-624
mega-bore column

PROGRAM: 10 C FOR 5 MIN.,
THEN 6 /MIN TO 160 C

VINYL CHLORIDE
1,2-DICHLOROETHENE
1,2-DICHLOROETHENE
CHLOROFORM
BENZENE
BROMOCHLOROMETHANE
DIBROMOMETHANE
TOLUENE
TETRACHLOROETHENE
CHLOROBENZENE
1,2-XYLENE
1,2,2-TETRACHLOROETHANE
3-BUTYL-BENZENE
1,2-DICHLOROBENZENE
1,2,4-TRICHLOROBENZENE
1,2,3-TRICHLOROBENZENE

RETENTION TIME, MIN.
FIGURE 7.
GAS CHROMATOGRAM OF VOLATILE ORGANICS
FIGURE 8.
GAS CHROMATOGRAM OF TEST MIXTURE

0.5 µg/L PER COMPOUND
1. 1,1-DICHLOROETHYLENE
2. METHYLENE CHLORIDE
3. TRANS-1,2-DICHLOROETHYLENE
4. 1,1 DICHLOROETHANE
5. ISOPROPYLETHER
6. CHLOROFORM
7. 1,1,1-TRICHLOROETHANE
8. 1,2-DICHLORORETHYLENE
9. CARBON TETRACHLORIDE
10. BENZENE
11. FLOUROBENZENE (INT. STD.)
12. TRICHLOROETHYLENE
13. 1,2-DICHLOROPROPAINE
14. BROMDICHLOROMETHANE
15. TOLUENE
16. BROMOCHLOROPROPANE INT. STD.
17. DIBROMOCHLOROMETHANE
18. TETRACHLOROETHYLENE
19. CHLOROBENZENE
20. ETHYLBENZENE
21. 1,3-XYLENE
22. BROMOFORM
23. BROMOBENZENE
24. 1,4-DICHLOROBENZENE
25. 1,2,4-TRICHLOROBENZENE
26. NAPHTHALENE
FIGURE 9.
LOW SOILS IMPINGER
METHOD 8260A
VOLATILE ORGANIC COMPOUNDS BY GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS):
CAPILLARY COLUMN TECHNIQUE

Start

7.1 Select procedure for introducing sample into GC/MS.

Purge-and-trap

7.2 Set GC/MS operating conditions.

7.3.1 Tune GC/MS system with BFB.

7.3.2 Assemble purge-and-trap device and prepare calibration standards.

7.3.2.1 Perform purge-and-trap analysis.

Direct Injection

7.3.4 Calculate RFs for 5 SPCCs.

7.3.5 Calculate %RSD of RF for CCCs.

7.4 Perform calibration verification.

7.5 Perform GC/MS analysis utilizing Methods 5030 or 8260.

7.6.1 Identify analytes by comparing the sample and standard mass spectra.

7.6.2 Calculate the concentration of each identified analyte.

7.6.2.3 Report all results.

Stop